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ABSTRACT 

This thesis presents a study of destabilisation of oil droplets that produced from 

alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory­

fabricated polyvinylidene fluoride (PVDF) membranes. Four formulations of PVDF 

membranes were fabricated via immersion precipitation method with ethanol (0 -

30 %, v/v) as the coagulant to control the membrane formation. The membrane 

morphology and structures as well as pore sizes were characterised by using scanning 

electron microscopy (SEM), while the thickness was measured by a digital micrometre, 

and the porosity was determined by gravimetric method. The radius of oil droplets 

in feed and permeate solutions was measured by dynamic light scattering device. 

The membranes with the effective area of 17.35 cm2 were tested with synthesized 

ASP solutions that contained 1500 mg/L of the oil droplets. The oil droplets for feed 

solution ranged from 10-200 nm to 700-4000 nm with the mean radius 61 nm. 

Results show that with increasing of ethanol concentration, a pore size at the top 

and bottom surface become larger. Macrovoid structure formed near to the top 

surface and the sponge-like structure exhibited at the bottom. As ethanol 

concentration increased, the membrane porosity increased slightly from 77-83%, 

while thickness has no significant effects. The distilled water permeation flux 

increased from 27 .37 to 74.69 kg/m2min at 2 bar transmembrane pressure when the 

ethanol coagulant increased. Hagen-Poiseuille law and Darcy's law models were 

suggested to govern the permeation fluxes. The mean values of the membrane 

thickness, porosity and pore size were used to predict the fluxes. The membrane 

resistance was approximately 1011 m-1. The SEM was defective in the mean pore size

measurement. When synthesized ASP produced water used as feed solutions, the 

flux and fouling resistance increased with the transmembrane pressures from 0 to 4 

bars. The oil droplets radius in permeates increased to 20 - 4000 nm with mean 

radius 200 to 3000 nm. It proved that the destabilisation of the oil droplets took place 

when the ASP solution permeated through the asymmetric PVDF membranes 

especially for 2 and 4 bar transmembrane pressure. while no significant influence by 

the different formulation of asymmetric membrane structures. The membrane fouling 

increased as the flux decreased over time fitted the Darcy's law. 
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ABSTRAK 

KETIDAKSTABILAN TITSAN MINYAK DALAM AIR YANG DIHASILKAN 

DARIPADA BANJIR ALKALI-SURFAKTAN-POLIMER DENGAN 

MENGGUNAKAN PVDF MEMBRAN ASIMETRIK 

Tesis ini membentangkan kajian mengenai ketidakstabHan titisan minyak yang 
dihas11kan daripada ba17Jir a/kali-surfaktan-polimer (ASP) dengan menggu_nakan 
empat jenis membrane polivinilidena f/uorida (PVDF) yang di hasilkan di makmal. 
Empat formulasi membran PVDF telah dibentuk melalui kaedah pemendapan 
rendaman dengan etanol (0 - 30 %/ v/v) sebagai koaagulan untuk mengawal 
pembentukan membran. Morfologt struktur dan saiz Jiang membran dicirikan dengan 
menggunakan mikroskop elektron imbasan manakal ketebalan diukur 
mengggunakan mikrometer digital dan keliangan di uji menggunakan kaedah 
gravimetri. Ju/at jejari titsan minyak di ukur menggunakan a/at hamburan cahaya 
yang dinamik. Membran dengan ke/uasan kawasan 17. 35 crrl diuji dengan sisa air 
banjir ASP yang mengandungi 1500 mg/L titisan minyak. Titisan minyak di larutan 
yang di masukkan da/am proses filtrasi mempunyai ju/at jejari dari 10-200 nm ke 
700-4000 nm dengan jejari purata 61 nm. Has11 kajian menunjukkan apabi/a
kepekatan etano/ semakin meningkaC saiz Jiang yang /ebih besar di permukaan atas
dan bawah terbentuk. Makrovoid struktur terbentuk berhampiran permukaan atas
dan struktur seperti span di bahgian bawah. Dengan peningkatan kepekatan etanol
keliangan membran menaik sedikit dari 77 ke 83%/ manakalaketebalan membran
tidak terpengaruh dengan ketara. Fluks penyerapan air suling meningkat dari 27.37
ke 74. 69 kg/m2 min pada 2 bar tekanan transmembran apabi/a kopekatan eta no/
meningkat. Undang-undang daripada Hagen-Poiseui//e dan Darcy digunakan untuk
menentukan f/uks. NJ/ai min keteba/an membran keliangan dan sazi Jiang digunakan
untuk meramal fluks. Rintangan membran ada/ah 1011 m-1. Pengukuran saiz /ubang
membran menggunakan SEM ada/ah kurang tepat. Apabi/a sisa air dari banjir ASP
yang disintesis digunakan sebagai /arutan yang di masukkan dalam proses filtras�
rintangan dan fouling rintangan meningkat dengan tekanan transmembran dar 0 ke
4 bar. Ju/at jejari bagi titisan minyak yang tembus melalui membran meningkat
kepada 20-4000 nm dengan jejari purata 200-3000 nm. Ianya telah membuktikan
bahawa ketidakstabila/ titisan minyak ber/aku apabila larutan ASP menyerap melalui
PVDF asimetrik membrane terutamanya pada tekanan transmembrane 2 dan 4/
manaka/a tiada kesan ketara a/eh struktur membran. Faul membran meningkat
apabila fluks bekurangan dari masa ke semasa selari dengan undang-undang Darcy.
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CHAPTER 1 

INTRODUCTION 

1.1 Enhanced Oil Recovery 

Oil recovery process is divided into three categories; primary, secondary, tertiary as 

shown in Figure 1.1. Natural flow and artificial lift are considered primary recovery 

from the well. However, it only collected about 12 to 30 % of the original oil placed 

in the reservoir. Then secondary recovery technique was introduced, where 

displacement energy naturally existing in the reservoir which implies the initial 

production stage (Jelmert et al., 2010). Tertiary recovery techniques were held when 

the production from secondary technique was declined since the recovery factor can 

rise up to 50% (Jelmert et al., 2010). This Tertiary technique or also known as 

'Enhanced oil recovery' (EOR) used methods including gas injection, thermal 

recovery, and chemical injection. However, for the oil field industry gaseous and 

chemical injection (Ko et al., 2014) was more preferable. The common chemical 

injection method is polymer flooding, alkaline-polymer flooding, and alkaline­

surfactant-polymer flooding. 

1.2 Alkaline-Surfactant-Polymer {ASP) Flooding 

Alkaline-Surfactant-polymer (ASP) EOR is a tertiary technology that injected to the 

injection well in the reservoir as shown in Figure 1.2. The alkaline chemicals are 

injected at the first place to allow the alkaline and acidic oil component to create in­

situ surfactant, then the water-soluble polymer is injected resulting the improvement 

in mobility of oil recovered. The oil can be collected by pumping directly from the 

production well along with the produced water from ASP flooding as a by-product. 

This ASP EOR technology application is used in China's oilfield such as Daqing 

oilfield, Shengli, Gudao and Karamay (Olajire, 2014). While in Canadian, ASP project 

was conducted at Taber South, Taber Glauconitic, and Suffield (Olajire, 2014). West 

kiehll, Cambridge Minnelusa, Tanner field, Sho-Vel-Tum field and 
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Lawrence Field Illinois is the oilfield for ASP projects in USA (Olajire, 2014). The 

common alkaline used was carboxylate, sulphate, sulphonate, hydroxyl, and 

polyethylene oxides. While polyacrylamide, partially hydrolysed polyacrylamide, and 

xantham gum for the common polymer used. Unfortunately, there are few challenges 

associated with ASP EOR technology which is operational difficulties, scaling issues 

during ASP flooding, surfactant precipitation, and the ASP produced water disposal 

treatment. The produced water from the ASP flooding that contains alkaline, 

surfactant and polymer are environmentally destructive and costly since it is more 

difficult to treat than the water flooding (Deng et al., 2002; Guo et al., 2006; Wang 

et al., 2011). 

1.3 Conventional Treatment Technology for ASP Produced Water 

For the purpose of sustainability, reuse of the produced water for re-injection is an 

attractive option for offshore ASP EOR. Varies action takes to treat produced water, 

conventionally through physical, chemical, and membrane methods. Even though 

there are many methods introduced but current technologies cannot remove small­

suspended oil particles and dissolved element. Physical treatment like cyclone, 

flotation tanks, and settling tanks are mostly designed for water and polymer flooding 

(Deng et al., 2002; Arthur et al., 2005). Then treatment on the produced water from 

ASP flooding using chemical demulsifiers was widely used especially in China (Gao et 

al., 2017), chemical demulsifier such as DODY68 was actively studied (Ge et al., 

2010; Zhang et al., 2011; Deng et al., 2005). However, the treated produced water 

that contained the excess demulsifiers is not suitable for reuse and re-injection 

because it may create a secondary wastewater. Then Membrane treatment being 

considered. Hence, membrane technology has become active in oil-water separation 

applications (Padaki et al., 2015). 

1.4 Membrane Separation Technology for ASP Produced Water 

Membrane-based separation techniques have become the promising technology for 

the 21st century (Fakhru'I- Razi et al., 2009). Membrane separation technology can 

be the best option to treat the produced water from offshore ASP EOR due to its 

advantages (Cleveland, 1999; Baker, 2004): 

4 



• No addition of chemical demulsifiers is required, thus no secondary

wastewater is produced;

• The requirement of mechanical parts for the membrane system is less, hence

the flowsheet of the membrane system is simple and the footprint of the

membrane system is small. These make the membrane system become more

preferable for offshore application because the space and weight in the

offshore production deck are limited;

• A minimal maintenance;

• Easy start-up and shut-down.

Hence, a thin film membrane which is hydrophobic and oleophilic is suggested 

in this thesis. The hydrophobic characteristic used to allow the membrane to repel a 

water while oleophilic characteristic used to extract an oil since it is highly permeable 

to oil droplets. At the same time, a narrow membrane pore size is needed to remove 

surfactant barrier skin from oil droplet and larger pore sizes are required in order to 

oil coalescence happened as illustrated in Figure 1.3. 

Many researchers studied oily wastewater separation included castrol oil­

water emulsion (Rajasekhar et al., 2015), colza oil-water emulsion (Ju et al., 2015), 

lubricating oil-water emulsion (Ju et al., 2015), soybean oil-water emulsion (Ju et al., 

2015), surfactant-stabilized oil-water emulsion (Zuo et al., 2018), machine oil-water 

emulsion (Zhang and Liu, 2015), and vegetable oil-water emulsion (Pagidi et al., 

2014). However, these oil-water separation studies mostly focusing to recover clean 

water from oily wastewater and it also used a hydrophilic membrane to reject the oil. 

Up till now, no investigation on ASP produced water treatment using hydrophobic 

and oleophilic membrane. 

1.5 Problem statement 

Polypropylene (PP), polytetrafluoroethylene ethylene (PTFE), polyethylene (PE) and 

polyvinylidene fluoride (PVDF) membranes are suitable for ASP produced water 

treatment since it is hydrophobic and oleophilic. However, all these types of 

membrane cannot perform as asymmetric membrane except for PVDF membrane. 

PVDF membranes with asymmetric structure can be simply fabricated by using phase 

inversion technique (Liu et al., 2011). 

5 
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The structure consists more than two structural planes that have different 

morphologies which is non-identical. For top layer structure and morphologies, it is 

more to dense layer, where finger-like and sponge-like layer in the middle, and 

macrovoids layer at the bottom. Different layer in this asymmetric membrane gives 

different pore sizes, these structure formations depend on the coagulation rate during 

the immersion precipitation process. In general, when fast coagulation rate 

happened, macrovoids formation induced while sponge-like formation obtained from 

slow coagulation rate. An addition of a non-solvent in water coagulation bath can 

reduce the coagulation rate. Hence the concentration of the non-solvent in the water 

coagulation bath may control the structure and pore size of the membrane (Bottino 

et al., 1991; Yuliwati and Ismail, 2011). 

In concern of destabilisation of the oil droplets, top layer of asymmetric 

membrane that consists of small pore size are hypothesize for the oil droplet 

breakdown whereas large pore size at the bottom layer is essential for the coalesced 

oil droplet growth as shown in Figure 1.3 before, since emulsion breakdown ability is 

stronger in the smaller pore size membrane while coalesced oil droplet growth ability 

better in larger pore size (Kwakatsu et al., 1999). Pressure can be used as a driving 

force to permeate the oil through the membrane. When the transmembrane pressure 

applied to the feed solution, destabilisation of the oil droplets will take place (Kong 

and Li, 1999) and the oil droplets are deformed and squeezed through the membrane 

pores. The oil droplets that permeate through the membrane may have an increasing 

in oil droplet size since its coalesce and destabilised when passing through the 

membrane. However, at some point the oil droplets may foul the asymmetric 

membrane. 

1.6 Objectives of the Research 

The main goal for this research is to destabilise the oil droplets in the ASP produced 

water using asymmetric PVDF membrane. The sub-objectives for this study are as 

follows: 

a) To fabricate hydrophobic asymmetric PVDF membranes with different

membrane structure by using phase inversion technique; different

7 



concentrations of ethanol (0-30% v/v) used in coagulation bath to control 

the membrane structure. 

b) To characterize the membranes such as morphology and structure,

thickness, porosity, pore size, membrane resistance and flux; membrane

resistance and flux were predicted by using Hagen-Poiseuille and Darcy's

law.

c) To destabilise the oil droplets in ASP produced water with fabricated

asymmetric membranes by using a crossflow filtration system; the size of

the oil droplets before and after destabilisation are observed.

d) To identify the effect of transmembrane pressure on destabilisation of oil

droplets by applying three different transmembrane pressure (0,2,4 bar)

in filtration process; Membrane fouling resistance are determined by using

Darcy's law.

1. 7 Outline of Thesis

This thesis consists of five main chapters including introduction in Chapter 1, 

enhanced oil recovery, alkali surfactant polymer flooding, ASP produced water 

treatment. While characteristic of ASP produced water, oily wastewater treatment by 

membrane separation, hydrophobics membrane, membrane structure, and 

immersion precipitation in Chapter 2. Chapter 3 discussed the methodology, 

apparatus and equipment for experimental work, and analysis while Chapter 4 

discussed the experimental results. Lastly, in Chapter 5 the summarized of the 

conclusion. This thesis also completed with references and appendices. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Characteristic of ASP Produced Water 

The produced water from the ASP EOR process contains large numbers of residual 

chemicals, it is because of the use of alkali, surfactant and polymer in the injected 

aqueous solution in ASP flooding technology. The properties of the produced water 

from ASP flooding is shown in Table 2.1. 

2.2 Oily Wastewater Treatment by Membrane Separation 

Membrane separation is a process without heating, it used less energy than 

conventional thermal separation processes such as distillation, sublimation or 

crystallization. The separation process is purely physical as shown in Figure 2.1. 

Permeate is the feed that does pass through the membrane while retentate is a feed 

that does not pass through. Pressurize membrane processes such as 

nano/ultra/microfiltration are the pressure exerted on the solution at one side of 

membrane that used as a driving force to separate the feed into permeate and 

retentate. 

2.2.1 Oil as Retentate/Rejection 

Separation of water from oil-water emulsion usually happen when water attached to 

the membrane and passing through the membrane pores, this separation usually 

used a hydrophilic membrane where the oil as retentate and water as permeate. 

Table 2.2 shows a few researchers that used oil as retentate. 

2.2.2 Oil as Permeate 

Theoretically, the separation of oil involves a series of steps, firstly attachment of oil 

droplets to the membrane surfaces on the upstream side then, coalescence and 

penetration of oil into and through the membrane and the last one is the release of 




