
# DYNAMICS OF DIPTEROCARP SEEDLINGS IN FOREST FRAGMENTS IN SABAH, MALAYSIA

# YEONG KOK LOONG



FACULTY OF SCIENCE AND NATURAL RESOURCES
UNIVERSITI MALAYSIA SABAH
2015

### **UNIVERSITI MALAYSIA SABAH**

#### **BORANG PENGESAHAN STATUS TESIS**

JUDUL:

DYNAMICS OF DIPTEROCARP SEEDLINGS IN FOREST FRAGMENTS

IN SABAH, MALAYSIA

IJAZAH:

DOKTOR FALSAFAH (PERHUTANAN)

Saya <u>YEONG KOK LOONG</u>, Sesi Pengajian <u>2009-2014</u> mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan tesis ini untuk tujuan pengajian sahaja.
- 3. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

Disahkan oleh,

UNIVERSITI MALAYSIA NURULAIN BINTHISMAT LIBRARIAN UNIVERSITI MALAYSIA SAFALIBRARIAN (Tandatangan Penulis)

Alamat:

Tarikh: 31 Disember 2014

PROF. MADYA DR. JOHN TAY Penyelia

## **DECLARATION**

I hereby declare that the materials in this thesis are my own except for quotations, excerpts, equations, summaries and references, which have been dully acknowledged.

31 December 2014

Yeong Kok Loong PF20099099



# CERTIFICATION

NAME : YEONG KOK LOONG

MATRIC NO. : **PF20099099** 

TITLE : DYNAMICS OF DIPTEROCARP SEEDLINGS IN

FOREST FRAGMENTS IN SABAH, MALAYSIA

DEGREE : DOCTOR OF PHILOSOPHY (FORESTRY)

VIVA DATE : 10 SEPTEMBER 2014

## **DECLARED BY**

## 1. SUPERVISOR

Assoc. Prof. Dr. John Tay

UNIVERSITI MALAYSIA SABAH

#### **ACKNOWLEDGEMENTS**

First and foremost, I would like to express my gratitude to my academic supervisor, Assoc. Prof. Dr. John Tay, who has advised and guided me with patience throughout my study. During the thesis writing, he had provided me with ideas, suggestions and encouragement. I would also like to thank Professor Dr. Jane Hill, Department of Biology, University of York and Dr. Glen Reynolds, Director of SEARRP. I am also greatly benefited from their advice and encouragement.

I am grateful to the Shell, Earthwatch Institute and The Royal Society South East Asia Rainforest Resarch Programme (SEARRP) for awarding me a scholarship in this undertaking, which had enlightened my financial burden. I also wish to thank Wilmar International Limited. The company had enlightened my financial burden to pay for accommodation and food charges. This would not have been possible without the support from Mr. Foo Kok Fei, Manager of Rekahalus Plantation, Mr. Ferderick Chok, Manager of Sabahmas Plantation and their staffs in providing valuable information on the history of the plantations and their kindness in arranging accommodation and foods during my fieldwork at both plantations

This thesis would not have been possible without the permission from Datuk Sam Mannan, Director of Sabah Forestry Department and Dr. Waidi Sinun, Head of Conservation and Environmental Management, Yayasan Sabah. I also wish to thank Mr. Jikos Gidiman, Manager of Danum Valley Conservation Area (DVCA) and his staffs for their kind assistance in providing information background of DVCA.

Special thanks to Dr. Robert Ong, Head of Silviculture section, Forest Reseach Centre (FRC), Sandakan, Mr. Indra Suunjoto, District Forest Officer, Malua Forest Reserve, Mr. Petin Kilou, District Forest Officer, Beluran and Peter Lagan, District Forest Officer, Deramakot Forest Reserve. They have provided me insight story on the history of forestry in Sabah.

In the fieldwork, I had been aided for about three years by the staffs of SEARRP. I would like to express my sincerest gratitudes to Mr. Adrian Karolus and Mr. Philip Ulok, Managers of SEARRP for their support in organizing field assistants, accommodation, and transport. I am indebted to Mr. Deddy Deddlier, Mr. Herdam B. Tarman, Mr. Remmy Murus, Mr. Udin Jaga, Mr. Azlin, Mr. Amat Ahmad, Mr. Mike Bernadus, Mr. Alfren Tuliang, Mr. Anthony Karolus and Mr. Unding in assisting me throughout the fieldworks.

Most importantly, I wish to thank my parents, Mr. Yeong Wong Fatt and Madam Lau Beng Suan for standing by me through the difficult times and for everything they had provided me. I wish to thank also my entire extended family particularly my siblings for their loving and caring for me. I also would like to thank Mike Senior and Sarah Scriven for assisting me in data analysis.

Yeong Kok Loong 31 December 2014

#### **ABSTRACT**

Primary rainforest once dominated the landscape of the Malaysian state of Sabah. Since the 1950s, extensive areas of these forests have been exploited in the pursuit of socio-economic gains. Some have been degraded through logging while others converted to non-forestry uses. For the latter, only remnants of forest patches existed in the agricultural landscape. Forest fragments are known to support high levels of biodiversity and potentially could promote landscape connectivity within the agricultural landscape. The aim of this study was to investigate the dynamics of dipterocarp seedlings in forest fragments in relation to their size and quality. A total of 12 transects were established in 10 sites; one transect each for eight forest fragment ranging from 3 to 3,290 ha, two in continuous logged forests (LF: 33,969 ha), and two in undisturbed primary forests (PF: 44,800 ha). At each transects, one to three 50x50 m main plot(s) were established at 500 m intervals along a line transect. Natural dipterocarp seedlings were measured in twenty 1m<sup>2</sup> quadrats established in a stratified random manner within each main plot. Vegetation structure (tree density, tree species, canopy cover, ground cover, and litter layers) and environmental conditions (light, soil moisture and pH, soil nitrogen, phosphorus and carbon, and C:N ratio) were quantified within the main plot. Dipterocarp seedlings of three ecological contrasting species i.e. Parashorea malaanonan (PM, light demander), Dryobalanops lanceolata (DL, intermediate), Hopea nervosa (HN, shade tolerant) were planted randomly in 30x36m in the center of each main plot to examine survival, growth and herbivory rates. The purpose of using planted seedlings was to standardize their age and species composition across study sites. Leaf litter decomposition rates of the same species (PM, DL and HN) were quantified from 5 litterbags in a 10x5m plot within each main plot for 120 days (total of 15 bags per plot and 480 litter bags in all sites). The abundance of natural dipterocarp seedlings in PF ( $\bar{x}_{density}$ =5.27 seedlings m<sup>-2</sup>±0.73(SE);  $\bar{x}_{richness}$ =0.29 species m<sup>-2</sup>±0.03(SE)) was 6 to 25 times higher than in LF ( $\bar{x}_{density}$ =0.38 seedlings m<sup>-2</sup>±0.05;  $\bar{x}_{richness}$ = 0.16 species m<sup>-2</sup>±0.03) and FF ( $\bar{x}_{density}$ =0.04 seedlings m<sup>-2</sup>  $^2\pm0.02$ ;  $\bar{x}_{richness}=0.03$  species m<sup>-2</sup> $\pm0.01$ ), and increased with increasing forest fragment size. Forest quality characterized by abundance of dipterocarp trees, canopy structure, soil moisture content and low soil pH was highest in PF and increased with increasing forest fragment size. In relation to forest quality, dipterocarp seedlings abundance increased with increasing forest quality. Survival rates of the planted seedlings in FF (range: 30% to 70%) were ca. 10% lower than PF (range: 60% to 80%) and LF (range: 50% to 80%) and increased with increasing forest fragment size and forest quality. Seedlings growth and herbivory, however, was highest in FF due to higher light environment and decreased with increasing forest fragment size and quality. Leaf litter decomposition rates of three dipterocarp species were highest in PF (range: 47-58%); followed by LF (range: 32-47%) and FF (range: 28-40%), and increased with increasing forest fragment size and quality. The result from this study suggested that forest fragments larger than 12 ha had responded to artificial regeneration, thus suggested such forest fragments be retained and should not be replaced for other uses.

*Keywords*: dipterocarp seedlings, forest fragments, forest quality, leaf litter decomposition

## **ABSTRAK**

# Dinamik Anak Pokok Dipterocarp di Hutan Tersepih Sabah, Malaysia

Pada asalnya, landskap di Sabah, Malaysia dilitupi oleh hutan dara yang luas, Hutan ini mula diterokai sejak 1950an bagi tujuan perkembangan sosial-ekonomi. Sejak itu, hutan tersebut mengalami kadar degradasi yang teruk. Kemudiannya, hutan dara ini ditukar kepada kawasan perladangan dan terhasil hutan terserpih di sekitar ladang. Hutan terserpih diketahui mengandungi kepelbagaian hutan yang tinggi dan penting untuk dilindungi. Tujuan kajian ini adalah untuk menyiasat dinamik anak pokok dipterocarp di hutan tersepih berhubung dengan saiz dan kualiti. Dua belas kawasan telah dikaji; lapan kawasan adalah hutan tersepih bersaiz 3 hingga 3,290 ha serta dua kawasan hutan berterusan iaitu telah dibalak (LF, 33,969 ha) dan hutan dara (PF, 44,800 ha). Satu hingga tiga 50x50m plot utama dibina pada selang 500m mengikut transek di setiap kawasan kajian. Anak pokok dipterokap asli dicerap dalam dua puluh kuadrat 1m² di setiap plot utama. Struktur hutan (kepadatan dan spesies pokok, silara hutan, vegetasi penutup bumi, dan lapisan sarap hutan) dan keadaan persekitaran (cahaya dan, kelembapan, pH, nitrogen, fosforus, karbon, dan nisbah C:N tanah) diukur di setiap plot utama. Tiga spesies anak pokok dipterocarp iaitu Parashorea malaanonan (PM, peminat cahaya), Dryobalanops lanceolata (DL, perantara), Hopea nervosa (HN, peminat teduh) ditanam secara rawak di 30x36m plot bagi mengkaji kadar kematian, pertumbuhan dan herbivori di setiap plot utama. Penanaman dilakukan adalah supaya umur dan komposisi spesies anak pokok diseragamkan bagi setiap kawasan kajian. Kadar penguraian dau<mark>n-daun s</mark>arap tiga spesies dipterokarp (PM, DL dan HN) ditentukan melalui 5 beg sarap di 10x5m plot selama 120 hari (sejumlah 15 beg di setiap plot utama). Anak pokok dipterokarp asli di PF ( $\bar{x}_{kepadatan}=5.27$  pokok m<sup>-2</sup>±0.73(SE);  $\bar{x}_{kekavaan} = 0.29$  spesies m<sup>2</sup> ±0.03 (SE)) adalah 6 hingga 25 kali lebih tinggi daripada LF  $(\bar{x}_{kepadatan} = 0.38 \text{ pokok } m^{-2} \pm 0.05; \bar{x}_{kekayaan} = 0.16 \text{ spesies } m^{-2} \pm 0.03) \text{ dan } FF$  $(\bar{x}_{kepadatan} = 0.04 \text{ pokok } m^2 \pm 0.02; \bar{x}_{kekayaan} = 0.03 \text{ spesies } m^2 \pm 0.01), dan$ meningkat dengan peningkatan saiz hutan tersepih. Kualiti hutan (diwakili oleh kepadatan pokok dipterokarp, silara hutan dan kelembapan tanah yang tinggi serta pH tanah yang rendah) adalah tertinggi di PF dan meningkat dengan peningkatan saiz hutan tersepih. Berhubung dengan kualiti hutan, anak pokok dipterokap asli meningkat dengan peningkatan kualiti hutan. Kadar kehidupan anak pokok dipterokarp yang ditanam di FF (julat: 30-70%) adalah 10% lebih rendah berbanding PF (julat: 60-80%) dan LF (julat: 50-80%) dan meningkat dengan peningkatan saiz dan kualiti hutan tompok. Kadar pertumbuhan dan herbivori anak pokok adalah lebih tinggi di FF disebabkan oleh persekitaran cahaya yang tinggi dan menurun apabila saiz dan kualiti hutan tompok meningkat. Kadar penguraian daun sarap bagi semua spesies adalah tertinggi di PF (julat: 47-58%), diikuti oleh LF (julat: 32-47%) dan FF (julat: 28-40%) dan meningkat dengan peningkatan saiz dan kualiti hutan tompok. Hasil kajian ini menunjukkan hutan tersepih yang bersaiz lebih daripada 12 ha mempunyai keupayaan untuk regenerasi secara penanaman semula. Sehubungan dengan itu hutan terserpih tersebut hendaklah dikekalkan dan tidak patut ditukar kepada kegunaan lain.

Kata kunci: anak pokok dipterokarp, hutan tersepih, kualiti hutan, penguraian sarap daun

# **TABLE OF CONTENT**

|                                                                                                                                                                                                                                                                                                                                                                                                    | Page                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| TITLE                                                                                                                                                                                                                                                                                                                                                                                              | i                                     |
| DECLARATION                                                                                                                                                                                                                                                                                                                                                                                        | ii                                    |
| CERTIFICATON                                                                                                                                                                                                                                                                                                                                                                                       | iii                                   |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                   | iv                                    |
| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                           | V                                     |
| ABSTRAK                                                                                                                                                                                                                                                                                                                                                                                            | vi                                    |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                     | ix                                    |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                    | xii                                   |
| LIST OF ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                              | xiv                                   |
| LIST OF SYMBOLS                                                                                                                                                                                                                                                                                                                                                                                    | xv                                    |
| LIST OF APPENDICES                                                                                                                                                                                                                                                                                                                                                                                 | xvi                                   |
| CHAPTER 1: INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                            | 1                                     |
| <ul> <li>1.1 Background</li> <li>1.2 Justification</li> <li>1.3 Objectives</li> </ul>                                                                                                                                                                                                                                                                                                              | 1<br>3<br>4                           |
| CHAPTER 2: LITERATURE REVIEW                                                                                                                                                                                                                                                                                                                                                                       | 6                                     |
| <ul> <li>2.1 Tropical forests of Sabah <ul> <li>2.1.1 Distribution and extent</li> <li>2.1.2 Forest classification and uses</li> <li>2.1.3 Ecology of Dipterocarpaceae</li> </ul> </li> <li>2.2 Forest fragmentation <ul> <li>2.2.1 Extent of forest fragmentation</li> <li>2.2.2 Ecological theory of habitat fragmentation</li> <li>2.2.3 Impacts of forest fragmentation</li> </ul> </li> </ul> | 6<br>10<br>11<br>17<br>17<br>19<br>21 |

|     |                                                                                                                                          | Page     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CHA | APTER 3: METHODOLOGY                                                                                                                     | 30       |
| 3.1 | Study sites                                                                                                                              | 30       |
| 3.2 | Experimental design                                                                                                                      | 35       |
| 3.3 | Plot establishment and measurements                                                                                                      | 36       |
| 3.3 | 3.3.1 Dipterocarp seedling abundance and species richness                                                                                | 36       |
|     | 3.3.2 Abiotic and biotic factors                                                                                                         | 36       |
|     |                                                                                                                                          | 39       |
|     | 3.3.3 Measuring survival, growth and herbivory of planted seedlings                                                                      | 40       |
|     | 3.3.4 Quantifying leaf litter decomposition rates                                                                                        |          |
| 3.4 |                                                                                                                                          | 41       |
|     | 3.4.1 Status of naturally occurred dipterocarp seedlings in forest                                                                       | 41       |
|     | fragments and continuous forests                                                                                                         |          |
|     | 3.4.2 Forest quality                                                                                                                     | 44       |
|     | 3.4.3 Ecosystem processes in forest fragments and continuous forests                                                                     | 46       |
|     | 3.4.4 Best models explaining changes in natural dipterocarp seedling                                                                     | 47       |
|     | and ecosystem processes                                                                                                                  |          |
|     | and coosystem processes                                                                                                                  |          |
| CHA | PTER 4: RESULTS                                                                                                                          | 49       |
|     |                                                                                                                                          |          |
| 4.1 | Status of naturally regenerating dipterocarp seedlings in forest fragments and continuous forests                                        | 49       |
|     | 4.1.1 Seedling occurrence, density and species richness                                                                                  | 49       |
|     | 4.1.2 Defining forest quality in forest fragments and continuous forests                                                                 | 51       |
|     | 4.1.3 Best predictor variables for predicting natural dipterocarp seedlings occurrence, density and species richness in forest fragments | 63       |
| 4.2 | Ecosystem processes in forest fragments and continuous forests                                                                           | 66       |
| 7.2 | 4.2.1 Survival and growth of planted dipterocarp seedlings                                                                               | 66       |
|     |                                                                                                                                          | 73       |
|     | 4.2.2 Herbivory rates on planted dipterocarp seedlings                                                                                   | 73<br>78 |
| 4.0 | 4.2.3 Leaf litter decomposition                                                                                                          |          |
| 4.3 | Synthesis                                                                                                                                | 84       |
| СНА | PTER 5: DISCUSSION                                                                                                                       | 87       |
| 5.1 | Distribution of naturally recruited dipterocarp seedlings                                                                                | 87       |
| 5.2 |                                                                                                                                          | 89       |
|     | Survival and growth of planted dipterocap seedlings                                                                                      |          |
| 5.3 | Effects of herbivory on planted dipterocarp seedlings                                                                                    | 91       |
| 5.4 | Leaf litter decomposition                                                                                                                | 93       |
| 5.5 | Management and policy implications                                                                                                       | 94       |
| СНА | PTER 6: CONCLUSION                                                                                                                       | 96       |
| REF | ERENCES                                                                                                                                  | 98       |
| ΔPP | PENDICES                                                                                                                                 | 123      |

# LIST OF TABLES

|             |                                                                                                                                                                                | Page |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1:  | Classification of Forest Reserves (FRs) in Sabah.                                                                                                                              | 11   |
| Table 3.1:  | Descriptive characteristics of study sites by forest reserve, size, status and year of gazettment.                                                                             | 32   |
| Table 3.2:  | Framework of data analysis.                                                                                                                                                    | 42   |
| Table 4.1:  | Mean natural dipterocarp seedling occurrence, density and species richness in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites. | 49   |
| Table 4.2:  | Comparison of dipterocarp seedling occurrence, density and richness among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.     | 50   |
| Table 4.3:  | Mean number of five most abundance dipterocarp seedlings across 12 study sites.                                                                                                | 51   |
| Table 4.4:  | Regression statistics for the relationships between dipterocarp seedling occurrence, density and species richness against forest fragment size.                                | 51   |
| Table 4.5:  | Mean of biotic and abiotic factors in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                                         | 53   |
| Table 4.6:  | Comparison of biotic and abiotic factors among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                                | 54   |
| Table 4.7:  | Biotic factors in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                                                             | 55   |
| Table 4.8:  | Abiotic factors in in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                                                         | 56   |
| Table 4.9:  | Summary statistics of the relationship between biotic and abiotic factors against forest fragment size.                                                                        | 57   |
| Table 4.10: | Summary statistics of principle component analysis on vegetation structure and environmental parameters in defining forest quality.                                            | 60   |
| Table 4.11: | PRIN scores in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                                                                | 61   |

|             |                                                                                                                                                                          | Page |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 4.12: | Comparison of PRIN scores among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                                         | 61   |
| Table 4.13: | Regression statistics of the relationships between PRIN score and forest fragment size.                                                                                  | 62   |
| Table 4.14: | Regression statistics of the relationships between dipterocarp seedling occurrence, density and species richness against forest quality.                                 | 63   |
| Table 4.15: | Best models for predicting the occurrence, density and species richness of natural dipterocarp seedlings based on AICc values.                                           | 65   |
| Table 4.16: | Model-averaged effect sizes of predictor variables for change in dipterocarp seedling occurrence in forest fragments.                                                    | 65   |
| Table 4.17: | Model-averaged effect sizes of predictor variables for change in dipterocarp seedling density and species richness in forest fragments.                                  | 66   |
| Table 4.18: | Survival and growth rates of planted dipterocarp seedling in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.            | 67   |
| Table 4.19: | Comparison of survival and growth of planted dipterocarp seedling among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites. | 68   |
| Table 4.20: | Regression statistics of the relationships between survival and growth of planted dipterocarp species and forest fragment size.                                          | 72   |
| Table 4.21: | Regression statistics of the relationships between survival and growth of planted dipterocarp seedlings and forest quality.                                              | 73   |
| Table 4.22: | Best models for predicting survival and growth of planted dipterocarp seedlings based on AICc values.                                                                    | 74   |
| Table 4.23: | Model-averaged effect sizes of predictor variables for change in survival of planted dipterocarp seedling in forest fragments.                                           | 75   |
| Table 4.24: | Model-averaged effect sizes of predictor variables for change in diameter growth of planted dipterocarp seedling in forest fragments                                     | 75   |

| Table 4.25: | Model-averaged effect sizes of predictor variables for change in height growth of planted dipterocarp seedling in forest fragments.                  | 76 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 4.26: | Leaf area damage and leaf loss rates in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.             | 76 |
| Table 4.27: | Comparison of LAD and LL rates among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.                | 77 |
| Table 4.28: | Regression statistics of the relationships between LAD and LL and forest fragment sizes.                                                             | 77 |
| Table 4.29: | Relationships statistics between of the relationships LAD and LL and forest quality.                                                                 | 78 |
| Table 4.30: | Best models for predicting LAD and LL rates of dipterocarp seedlings in forest fragments based on AICc values.                                       | 81 |
| Table 4.31: | Mean leaf litter decomposition rates among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites.          | 81 |
| Table 4.32: | Comparison of leaf litter decomposition rates among continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF) sites. | 82 |
| Table 4.33: | Relationships between decomposition rates of PM, DL and HN, and forest fragment size and forest quality.                                             | 82 |
| Table 4.34: | Best models for predicting leaf litter decomposition rates of dipterocarp species in forest fragments based on AICc value.                           | 84 |
| Table 4.35: | Variables for predicting leaf litter decomposition rates in forest fragments based on model averaging of best-fitting models from GLMMs              | 84 |

Page

# **LIST OF FIGURES**

|             |                                                                                                                                                                                        | Page |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.1: | Map of forest reserves and other forested land in Sabah.                                                                                                                               | 7    |
| Figure 3.1: | Location map of study sites in Sabah, Malaysia.                                                                                                                                        | 31   |
| Figure 3.2: | Experimental design for data capture.                                                                                                                                                  | 37   |
| Figure 3.3: | Flowchart summarizing model-building procedure for comparative and relationship analysis using GLMMs.                                                                                  | 45   |
| Figure 3.4: | Flowchart summarizing model-building procedure for selection of best models.                                                                                                           | 48   |
| Figure 4.1: | Graph showing the relationship between (a) occurrence, (b) density and (c) richness of dipterocarp seedling and forest fragment size.                                                  | 52   |
| Figure 4.2: | PRIN 1 scores presented as mean scores ( $\pm$ SE) in forest fragments and continuous forests sites.                                                                                   | 62   |
| Figure 4.3: | Graph showing the relationship between (a) occurrence, (b) density and (c) richness of dipterocarp seedling with forest quality.                                                       | 64   |
| Figure 4.4: | Graph showing the relationships between survival of planted dipterocarp seedlings and (a) forest fragment size and (b) forest quality.                                                 | 69   |
| Figure 4.5: | Graph showing the relationships between relative diameter growth rates (mm month <sup>-1</sup> ) of planted dipterocarp seedlings and (a) forest fragment size and (b) forest quality. | 70   |
| Figure 4.6: | Graph showing the relationships between relative height growth rates (mm month <sup>-1</sup> ) of planted dipterocarp seedling and (a) forest fragment size and (b) forest quality.    | 71   |
| Figure 4.7: | Graph showing the relationships between leaf area damaged on dipterocarp seedlings after 18 months and (a) forest fragment size and (b) forest quality.                                | 79   |
| Figure 4.8: | Graph showing the relationships between leaf loss on dipterocarp seedlings after 18 months and (a) forest fragment size and (b) forest quality.                                        | 80   |

Figure 4.9: Graph showing the relationships between mean leaf litter decomposition rates for *Parashorea malaanonan* (PM), *Dryobalanops lanceolata* (DL) and *Hopea nervosa* (HN) against (a) forest fragment size and (b) forest quality.



## LIST OF ABBREVIATION

AIC Akaike Information Criteria **AMSL** Above mean sea level

**BDFFP** Biological Dynamics of Forest Fragments project

C Carbon

**CAIMS** Conservation Areas Information & Monitoring System

CI Confidence intervals

DOS Department of Statistic Malaysia

DL Dryobalanops lanceolata High Conservation Value HCV **IBT** Island Biogeography Theory

LAD Leaf area damage

LL Leaf loss

LF Logged Continuous Forest **ENSO** El-Nino Southern Oscillation

FAO Food and Agriculture Organization

FF Forest fragments

**GLMM** Generalized Linear Mixed Models

**GDP Growth Domestic Product** 

HN Hopea nervosa

MFR Malua Forest Reserve **MPOB** Malaysia Palm Oil Board

Nitrogen N P **Phosphorus** 

PAR Photosynthetic active radiation PCA Principle Component Analysis

Photon flux density PFD

Permanent Forest Reserve **PFR** PF Continuous Primary Forest PM Parashorea malaanonan **PRIN** Principal component scores

**RGR** Relative growth rates Reduced Impact Logging RIL

Roundtable on Sustainable Oil Palm **RSPO** 

SAR Species-area relationship

Specific leaf area SLA SEA Southeast Asia

SFD Sabah Forestry Department **VJR** Virgin Jungle Reserve

## **LIST OF SYMBOLS**

% Percentage Around or about ca. Less than > Greater than Smaller than or equal to ≤ ≥ Greater than or equal to Degree Minute Second Minus Equal to = Mean ī ± plus-minus Delta AIC Δi Micro μ C Celsius X By or times Centimetre cm  $d^{-1}$ Evapotranspiration Exponential e For example e.g. H<sub>2</sub>O In water solution Hectare ha ha<sup>-1</sup> Per hectare hour-1-Per hour That is to say or in other words i.e. mean annual decomposition rates k Km Kilometre Kq Kilogram Metre m Millimetre mm m<sup>2</sup> Square metre  $m^{-2}$ Per square metre  $m^3$ Cubic metre Parts per million ppm  $s^{-1}$ Per second SE Standard error year<sup>-1</sup>-Per year

# **LIST OF APPENDICES**

|             |                                                                                                                              | Page |
|-------------|------------------------------------------------------------------------------------------------------------------------------|------|
| Appendix A: | Pictures of experimental dipterocarp seedlings                                                                               | 123  |
| Appendix B: | Dipterocarp seedling abundance in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF). | 124  |
| Appendix C: | Dipterocarp tree abundance in continuous primary forests (PF), continuous logged forests (LF) and forest fragments (FF).     | 126  |
| Appendix D: | Statistical Glossary                                                                                                         | 128  |
| Appendix E: | R code for natural dipterocarp seedling analysis                                                                             | 130  |
| Appendix F: | R code for biotic and abiotic factors analysis                                                                               | 134  |
| Appendix G: | R code for planted seedlings analysis (survival and growth)                                                                  | 134  |
| Appendix H: | R code for planted seedlings analysis (herbivory)                                                                            | 136  |
| Appendix I: | R code for leaf litter decomposition analysis                                                                                | 137  |

UNIVERSITI MALAYSIA SABAH

## **CHAPTER 1**

#### INTRODUCTION

# 1.1 Background

The forests of Southeast Asia (SEA) are dominated by trees in the Dipterocarpaceae family, which comprise, in the Asian tropics, at least 500 species distributed across Borneo, Sumatra, Java, the Malay Peninsula and the wetter parts of Philippines (Primack and Corlett, 2005). Trees in this family can reach a diameter of well over 1 m and grow to height in excess of 70 m, have uniformly excellent timber qualities and play a dominant role in the economics of Asian forests (Whitmore, 1990; Ross, 2004). As a result of decades of industrial logging, much of the region's lowland dipterocarp forests have been heavily degraded (Whitmore, 1997; Ross, 2004). These degraded forests, particularly in Malaysia and Indonesia, are often converted to agricultural plantations.

Land use policy in Malaysia, and the development of plantations, has largely been driven by the National Agriculture Policy (1984-2010), which was intended to increase agricultural production as a means to support the nation's socio-economic development (Jomo *et al.*, 2004; Murad *et al.*, 2008). Agricultural development in Malaysia, over recent decades, has been dominated by the expansion of oil palm plantations (Abdullah and Nakagoshi, 2007) that now occupies 4.7 million ha or 15% of the total landmass (33 million ha) of Malaysia (DOS, 2013). Economically, it contributes about RM50 billion or 5% of Malaysia's Gross Domestic Product (MPOB, 2013; DOS, 2013).

In Sabah, oil palm plantations have expanded from approximately 100,000 ha in 1970 to over 1.4 million ha (or 20% of Sabah's land area) in 2013 (DOS, 2013; MPOB, 2013). Most of this development has been driven by the private sector on state-owned lands, though plantations have, in some cases, encroached into forest reserves (SFD, 2010; Foster *et al.*, 2011; Osman *et al.*, 2012). As plantations are developed, small patches of forest are often left behind (Benedick *et al.*, 2006; Hill *et al.*, 2011). These embedded patches of forest usually remain unplanted due to

inaccessibility (steep or rocky terrain), and/or their proximity to water bodies (Fitzherbert *et al.* 2008; Foster *et al.*, 2011). A key ecological concern about these forest fragments is their functional integrity within agricultural landscape (RSPO, 2013; HCVRN, 2014).

Forest fragments are known to support high levels of biodiversity (Benedick et al. 2006) and improve species richness (Lucey et al. 2014) and potentially could be important in promoting landscape connectivity within the agricultural landscape (Proctor et al. 2011). However, the assumption that forest fragments can still support high biodiversity and ecosystem functioning while maintaining viability (including the regeneration of dipterocarps) has not previously been tested. Seedling recruitment has been shown to fail within forest fragments when the overtopping canopy structure was disturbed (Benetez-Malvido, 1998; Bruna, 2002; Cramer et al., 2007), most likely due to changes in microclimate (Ferreira and Laurance et al., 1997; 1998; Laurance et al., 2002), exposure to increased wind speeds and turbulence and edge effects, leading to further habitat disturbance (Laurance et al., 1997; Ferreira and Laurance, 1997). The severity of these environmental changes within forest fragments depends on the intensity of disturbance and fragmentation. For example, selective logging within forests fragments in Brazil resulted in a 15% increase in canopy openness with a corresponding reduction in soil moisture of 50% compared to undisturbed forest fragments (Guarino and Scariot, 2012). Moreover, changes within fragments are correlated with fragment size (Ranta et al., 1998; Laurance et al., 2002). In a study in Brazil, Benitez-Malvido and Martínez-Ramos (2003) found that light intensity in 1 ha forest fragments was ~30% higher than in 100 ha forest fragments.

In addition, the loss of seed-producing trees in forest fragments (particularly dipterocarps which are targeted for their timber) would likely result in lower seedling abundance than continuous areas of forest (William-Linera, 1990; Bierregaard *et al.*, 1992; Ferreira and Laurance, 1997; Laurance *et al.*, 1998). The frequency of flowering is often disrupted by fragmentation (Fuchs *et al.* 2003; Laurance *et al.*, 2002; Herrerias-Diego *et al.*, 2006), and plant-animal interactions in terms of seed dispersal and pollination can also be impacted (Aizen and

Feinsinger, 1994; Cunningham, 2000; Chapman *et al.*, 2003). Seedlings, which do recruit into fragmented forests of show higher mortality rates as a result of increased animal browsing (Dudt and Shure, 1994; Benitez-Malvido *et al.* 1999; Terbogh *et al.*, 2001; Faveri *et al.*, 2008).

Another indicator of ecological functioning in ecosystems is the rate of litter decomposition. Leaf litter stores plant nutrients but unless they decompose, it can act as physical barrier for seedling establishment (Molofsky and Augspurger, 1992; Dupuy and Chazdon, 2008). In fragmented forests, both light and temperature regimes are key factors influencing the rate of litter decomposition (Burghouts et al., 1992; Laurance et al., 2002; Bruhl et al., 2003; Vasconcelos and Laurance, 2005; Vasconcelos et al., 2007; Barlow et al., 2007). These findings are supported by regional studies, which have indicated that mean annual decomposition rates (k) in tropical forests (2.33±2.44 k year<sup>-1</sup>) are higher than in temperate forests (0.36±0.17 k year<sup>-1</sup>) because of warmer tropical climates (Aerts, 1997; Berg *et al.*, 1993). In addition to climatic factors, the rate of litter decomposition is also dependent on the extent of soil biota activity and the abundance and distribution of invertebrate decomposers (Didham, 1998; Riutta *et al.*, 2013).

Studies on the impacts of forest fragmentation in Sabah, Malaysia have focused on ants (e.g. Bruhl *et al.*, 2003; Bickel *et al.*, 2006; Tawatao *et al.*, 2011), butterflies (Benedick *et al.*, 2006; Hill *et al.*, 2011; Lucey and Hill, 2012) and primates (Goossens *et al.*, 2005; Boonratana, 2013). The research on the effect of forest fragmentation on natural regeneration of diperterocarp remains scarce. Hence, understanding the impacts of forest fragmentation on dipterocarp seedlings dynamics is crucial, which can be contributed in the forest restoration and management solutions within plantation-dominated landscapes.

## 1.2 Justification

It has been well established that unplanned land use for forestry or agricultural uses affect the local microclimates of forest fragments (Laurance *et al.*, 1997; Laurance *et al.*, 2002). As a consequence of such ad hoc land modification, the occurrence of dipterocarp seedlings in forests would be uneven (Bruna, 2002;

Guarino and Scariot, 2012). In addition, the effect of intrusion factors such as herbivory would further disrupt seedling regeneration within forest fragments (Rao et al. 2001; Terborgh et al. 2001). These intrusions and perturbations would also affect the rates of litter decompositions that would affect seedling recruitment (Riutta et al., 2013). Results from this study would contribute to the understanding of the ecosystem functioning within forest fragments.

In order to understand the dynamics of dipterocarp seedlings in forest fragments, six hypotheses were formulated in this research as follows:

- a. the occurrence, density and species richness of naturally regenerating dipterocarp seedlings decline as fragment size decreases;
- b. forest quality declines as fragment size decreases;
- c. the occurrence, density and species richness of naturally regenerating dipterocarp seedlings increase with increasing forest quality;
- d. survival and growth rates of planted dipterocarp seedlings increase with increasing fragment sizes and forest quality;
- e. herbivory rates of planted dipterocarp seedlings increase as forest fragment size and quality decrease and;
- f. leaf litter decomposition rates decrease as forest fragment size and quality decrease.

# 1.3 Objectives

The main objective of this study was to examine the dynamics of dipterocarp seedlings in relation to forest fragment size and quality. The specific objectives of the research were to:

- a. Determine the status of naturally regenerating dipterocarp seedlings with respect to their occurrence, density and species richness in forest fragments of different sizes, and in continuous forests;
- b. Identify biotic and abiotic variables that best explain forest quality within the targeted forest fragments and continuous forests using principal component analysis (PCA)

- c. Test the relationship of forest quality with natural dipterocarp seedlings occurrence, density and species richness;
- d. Assess ecosystem function within forest fragments of varying sizes and continuous forests by:
  - i) measuring survival and growth of planted dipterocarp seedlings (*Parashorea malaanonan, Dryobalanops lanceolata* and *Hopea nervosa*) which were selected on the basis of their varying ecological traits,
  - ii) quantifying herbivory rates of planted dipterocarp seedlings,
  - iii) examining leaf litter decomposition rates.



# **CHAPTER 2**

#### LITERATURE REVIEW

# 2.1 Tropical forests of Sabah

#### 2.1.1 Distribution and extent

The tropical forests of Sabah comprise lowland and hill dipterocarp forest, swamp, beach, heath, limestone and montane forests (Fox, 1972 cited in CAIMS, 2005a; Fox, 1978). These forests extend from the coastal areas to as high as 3,000 m above mean sea level (AMSL). In the 1980s, there were *ca.* 4.5 million ha of forests in Sabah representing 60% of the 7.4 million ha of the total landmass (Marsh and Greer, 1992). Among the forests types, dipterocarp forests are the most extensive vegetation type in Sabah (Fox, 1972 cited in CAIMS, 2005a; Newbery *et al.*, 1996).

Lowland and hill dipterocarp forests are found from 0 up to 900m AMSL and can be categorized into five main types according to the dominant timber species i.e. Type 1, *Parashorea malaanonan*; Type 2, *Parashorea tomentella* and *Eusideroxylon zwageri*; Type 3, *Shorea* spp., and *Eusideroxylon zwageri*, Type 4, *Shorea* spp. and *Dipterocarpus* spp. and Type 5, *Parashorea malaanoanan* and *Dryobalanops lanceolata* forests (Fox, 1972 cited in CAIMS, 2005a). These forests are mostly located in the east coast of Sabah stretching westwards from Silabukan to the lower parts of the Segama and Kinabatangan (Figure 2.1). Type 1 forests are primarily located in the Darvel Bay area, which stretch from east Silabukan to Semporna peninsular. Type 2 forests can be found in Sandakan region and from lower parts of Segama and Kinabantangan to the west in Lokan area. The dominant species of Type 2 forests are *Parashorea tomentella* and *Eusideroxylon zwageri* as well as other associated species including *Parashorea malaanonan*, *Shorea johorensis* and *Dryobalanops lanceolata*.



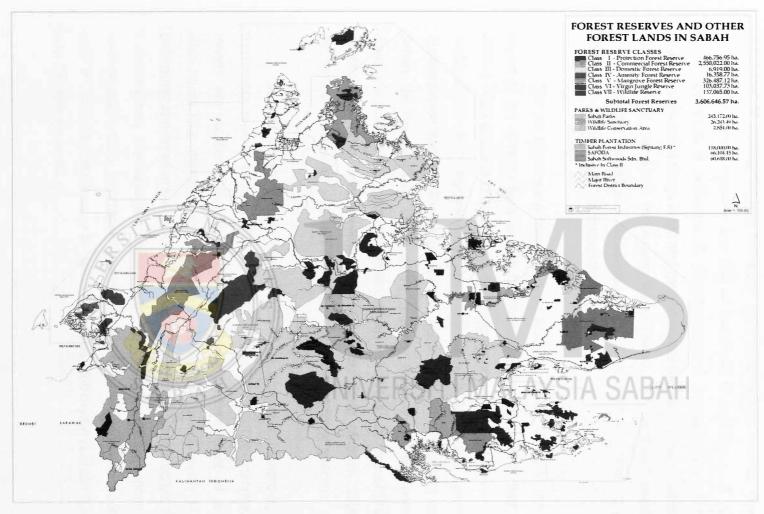



Figure 2.1: Map of forest reserves and other forested land in Sabah.

Source : Sabah Forestry Department (2012)