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Abstract. Over the years, self-reliant navigation has risen to the forefront of re-
search topics. Improving the path-planning competencies is an extremely im-
portant component in achieving excellent autonomous navigation. This paper
describes a refinement of the proficiency of mobile path-planning through a
computational approach, i.e., the Quarter-Sweep Two-Parameter Over-
Relaxation (QSTOR), to solving path-planning problems iteratively. The solu-
tion of Laplace’s equation (otherwise known as the harmonic functions) is the
source for producing the potential function of the configuration space of the
mobile robot. Numerical experiments illustrate that, in a given environment, a
mobile robot is able to steer towards a particular destination with a smooth and
ideal path from any beginning location. Furthermore, it is shown that in terms
of the iterations number and computational time, the QSTOR iterative tech-
nique outperforms its predecessors in addressing mobile path-planning issues.

Keywords: Finite Difference Method, Accelerated Over-Relaxation, Optimal
Route, Obstacle Avoidance, Quarter-Sweep lterative Techniques.

1 Introduction

The robotics discipline is gaining traction in our daily lives as well as in various do-
mains of modern industrial and cyber-physical automation. With the ability to embed
intelligence into robots becoming more widely available, identifying the optimal solu-
tions in the execution of any task, such as for path-planning and navigation, would be
easily accomplished. These kinds of tasks could be said as one of the most complex
challenges in intelligence robots. In the direction of constructing an autonomous mo-
bile robot, it is important for the robot to be competent and accurate in creating a
route as well as be collision-free. Practical algorithms concerning this difficulty have
great exploitation such as in computer animation [1], robotics manufacturing [2],
architectural design [3], including security, defence, and surveillance [4,5].

The aim of this paper is to use numerical potential functions on simulating a driv-
ing point-robot in the configuration space analogously by heat distribution [6]. The
employment of such a heat transfer paradigm results in an environment with no local



minima, which give hugely beneficial for robot path-planning. Laplace’s equation is
utilized to depict the analogy of heat distribution across the experiments. The ‘temper-
ature values' for the path creation model in the environment, referred to as configura-
tion space (C-space), are characterised by the solution of Laplace’s equation, i.e., the
harmonic functions. To solve these functions, a variety of approaches have been ex-
plored, while numerical techniques are most typically used due to their fast-
processing mechanisms and proficiency in solving the problem. This paper conducted
a number of tests to examine the performance of proposed accelerated algorithms in
generating mobile robot paths.

2 Path-planning Structure

Path-planning, in general, allows an autonomous vehicle or a robot to discover the
shortest and safest most obstacle-free path from a starting point to a destination. In-
door mobile robot path navigation can be achieved in many different ways. A path
navigation algorithm for an identified environment can certainly yield a series of
nodes for a robot to trail. Typically, a grid of a predetermined size is created to evalu-
ate different algorithms, showing where “passable” is on the C-space. It is reasonable
to assume that the robot can traverse all of the grid’s boundaries.

The structure of this experiment is based on the use of a point-robot to simulate the
motion within the recognized C-space. The robot’s route is determined using a heat
transfer analogy in which the target point (with the lowest potential value) serves as a
heat-pulling sink. While every wall and obstacle (with the highest potential value) is
regarded as a heat source that should always be set as constant. In compliance with
the heat transfer behavior, the heat will flow from a higher-temperature region to-
wards a lower-temperature region, completing the C-space. This event is represented
by harmonic function values, which will result in so-called heat flux lines flow-
ing/streaming towards the region with the lowest potential value, i.e., the sink. The
path line for the robot to traverse across the C-space was built out in this arrangement,
by following the heat flux line produced. The implementation of the harmonic func-
tion prevents the event of local minima and can guide the robot to avoid obstacles in
the environment [7].

2.1 Harmonic Functions

A Laplace’s equation-satisfying function is known as a harmonic function provided in
the domain Q < R". The borderline of every wall, each obstacle in the region, prima-
ry points, and target points are all contained within the boundary of Q for the devel-
opment of the robot path. Consider Laplace’s equation below with X, is the i coor-

dinates in the Cartesian plane, and n is the dimension.
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By using the numerical approach, i.e., Jacobi or Gauss-Seidel (GS), Laplace’s
equation (1) could be adequately solved. The harmonic function has been shown that
it abides by the min-max principle, which implies it prevents the formation of spuri-
ous local minima excluding the target point and typically creates a smooth path [8].
For this reason, the harmonic potential technique is a viable and appealing decision
for robot path-planning. Most often, conventional methods [9-11] are used to solve
the Laplace equation. Equation (1) in this paper was solved using the quarter-sweep
iterative approach to improve the acceleration of the computational execution.

A global approach is used to measure the harmonic potentials of the robot C-space
for path-planning problems. The trail lines for a robot to move along from start to end
location without encountering any obstacles are mapped using potential solutions for
equation (1). As mentioned earlier, obstacles and walls are viewed as current sources
whiles the target point is to be the sink. The Dirichlet boundary conditions provide
boundary values. Following that, by performing a standard Gradient Descent Search
(GDS) on the potential field, a sequence of potential points with lower values is
found, progressing to the point with the lowest potential value, which is the target
location.

Altogether, this paper attempt to replicate the stated path-planning paradigm, defin-
ing the solution of Laplace’s equation over the resemblance of temperature (for the
potential) and heat flow (for the path line). The experimentation takes place on a two-
dimensional domain with assorted shapes of obstacles, along with the walls. To ad-
dress equation (1) in gaining potential values for each node, the Quarter-Sweep Two-
Parameter Over-Relaxation (QSTOR) scheme is employed. The existing technique
(i.e., families of over-relaxation methods) were also measured for comparison to ana-
lyse the competence of the proposed scheme.

3 Materials and Techniques

From equation (1), the two-dimensional Laplace’s equation is given as
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The Laplacian operator is implied by V. To compute equation (2) using a numerical
method, it should be discretized over the simplest five-point finite difference approx-
imation (5P-FDA). For two-dimensional Laplace’s equation (2), let U, ; approaches

the solution of u along the grid point (xi,yj) , hence the discretization of these La-
place equations by conventional five-point stencil is written as

Ui—l,j +Ui+1,j +Ui,j—1 +U,

i, j+1

~4u,, =0. 3)

The iterative routine for Laplace’s equation (2) is implying swapping the node value
continuously with the median of its four neighbours. In parallel, all nodes in the grid



point will be computed using equation (3), this action is called full-sweep (FS) itera-
tion (see Fig. 1(a)). Abdullah [12] later initiated the Explicit Decoupled Group, which
was then known as the half-sweep (HS) approach. This method demonstrates an ef-
fective technique for solving PDEs [13-16]. Since the HS technique yielded such
promising results, Othman and Abdullah [17] came out with an improved approach
namely Modified Explicit Group, also known as quarter-sweep (QS). Fig. 1 indicates
the computational mesh of each sweep technique, where only black points are evalu-
ated for the whole iteration cycle. In the mesh region, only half and a quarter of the
node points are calculated using HS and QS schemes, respectively. Rationally, this
signifies the reduction of computational time on each iteration. Fig. 2 shows the com-
putational stencils of each technique. It is observed that the HS iteration is primarily
based on rotated 5P-FDA in solving the Laplace equation, given as
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Fig. 1. The computational mesh of (a) FS, (b) HS, and (c) QS technique.
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Fig. 2. The computational stencil of (a) FS, (b) HS, and (c) QS technique.
3.1  Conceptualization of the QS Method

The implementation of the QS iterative scheme will compute only 1 out of 4 of the
nodal points at one time (see Fig. 1(c)) during the iteration process in the C-space.
Consequently, it will decrease the computational complexity drastically i.e., roughly
75%. The QS approximation equation precisely skipped two nodal points from the



mesh space (see Fig. 2(c)). Therefore, the formula of QS five-point approximation be

written as
U +U +U

+U,,.,—4U,, =0, (5a)
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Considering finite difference from equation (5a), the GS iterative technique for QS

can be rewritten and denoted as
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Successive Over-Relaxation (SOR) is basically a variant of the GS technique. When
implanted SOR approach into equation (5) by appending a weighted parameter
[18], the QSSOR iterative scheme is given as
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Be noted that whenever @ =1, then the SOR approach is in fact simplified to the GS
method.

The Accelerated Over-Relaxation (AOR) fundamentally is a simplification of the
SOR technique with additional optimal parameters, denoted as @ and o' in this pa-

per. To execute the AOR scheme as proposed in [19], the node points of ui(ffv?fl and

usy, are interchanged to u) , and ul), respectively, as well as inserting the
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scheme of QSAOR is provided as

Ui(,kjﬂ) — %[Ui(l‘;j) _Ui(g,j +Ui(,kjt12) _Ui(,kj)_z:|
()

) +u +U.(_kj)_2 +u J+(l—a))U(k)

N i+2,] i i,j+2 i

Meanwhile, the Two-parameter Over-Relaxation (TOR) technique is indeed a deduc-
tion from the AOR scheme. The main intention of this technique is to improve the
convergence speed, ergo of it consists three different relaxation parameters, @, @',
and @" . Thus, the QSTOR iterative scheme is
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The uncertainty of relaxation parameter values has resulted in the minimum iteration
counts. Previous researchers [19,20] specified that the values of o’ and @" are gen-
erally chosen remain near to the SOR @ value. The computation is then recurrent for
arange of 1< w < 2. So as to discover the optimum value, the relaxation parameter
values are individual for each sweep case, as certain values are not converged in some
cases. Additionally, as the values of each parameter are predetermined before execu-
tion, the impact of complexity on determining the value of parameters on the entire
computation is unaffected. It will certainly shift if the few ranges of parameter values
are set in the computation algorithm. The implementation of the QSTOR scheme to
solve Laplace’s problem (2) is described in Algorithm 1.

Algorithm 1. QSTOR iterative scheme
i Set up the C-space through the designated start and target points.

ii. Initialising starting point U, & <-107,iteration <— 0.
For every e node points, calculate
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Compute the remaining O node points via the direct method
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Verify the convergence test for £ <-107"°, then perform GDS to create a path
towards the target. Otherwise, go back to step (iii).

4 Experiments and Results

There are four different C-spaces (with assorted obstacles) over four separate mesh
sizes through the simulation experiments in this study. Although no specific potential
values were appointed to any starting position, the target point was placed at the low-
ermost temperature values. During the initial setting, every obstacle and wall were
assigned with the highest potential value where boundary values are described by the
Dirichlet boundary conditions. The free spaces in the environment were made to be
zero potential.

The computational process was carried out using an AMD A10-7400P Radeon R6
with 10 Compute Cores 4C+6G running at 2.50GHz and 8GB of RAM. Provided that
the state for stopping criteria is satisfied, the process of iteratively measuring potential



values at each point continues. The iteration loop will be terminated, where the vari-
ance of the computational values was extremely small (i.e., 1.0™°), if the potential
values do not show any further changes. This level of precision was necessary for the
solutions to avoid saddle points, which are flat areas that fail to produce routes.

The iteration number and the execution time for every computational approach is
respectively shown in Table 1 and 2. As compared to other suggested techniques, the
QSTOR iterative scheme has been proven that it is significantly faster. It is demon-
strated that, in terms of iteration number, the QSTOR outperformed the QSAOR (ap-
proximately by 5% to 12%) and QSSOR (approximately by 15% to 28%). On the
other hand, the QSTOR decreases QSSOR from 10% to 18% and QSAOR from 9% to
20% in terms of execution time.

Table 1. Findings of the proposed schemes for iteration number.

Techniques NXN

300 600 900 1200

FSSOR 1728 8117 17831 31346

FSAOR 1591 7529 16594 28984

- FSTOR 1656 7815 17199 27895
5 HSSOR 837 4108 9086 15892
£ HSAOR 759 3803 8420 14768
s HSTOR 797 3949 8721 14234
© QSSOR 351 2078 4632 8113
QSAOR 348 1913 4280 7508

QSTOR 344 1992 4448 7279

FSSOR 2228 8776 19254 33558

FSAOR 2006 7973 17538 30573

o FSTOR 1893 7553 16642 29008
5 HSSOR 1071 4438 9813 17149
b= HSAOR 944 4023 8924 15614
5 HSTOR 877 3811 8461 14813
© QSSOR 452 2229 5014 8771
QSAOR 430 2007 4542 7976

QSTOR 414 1890 4305 7558

FSSOR 3624 14644 33004 57484

FSAOR 3236 13165 29680 51738

™ FSTOR 2843 11685 26393 46021
5 HSSOR 1780 7445 16856 29418
b= HSAOR 1568 6681 15149 26456
5 HSTOR 1349 5909 13463 23523
© QSSOR 828 3769 8624 15061
QSAOR 698 3366 7740 13545

QSTOR 512 2960 6856 12023

FSSOR 2507 9868 21654 37762

FSAOR 2288 9025 19840 34601

< FSTOR 2067 8217 18052 31519
5 HSSOR 1212 5000 11036 19288
b= HSAOR 1097 4555 10098 17670
5 HSTOR 967 4141 9180 16085
© QSSOR 555 2502 5638 9873
QSAOR 467 2287 5148 9030

QSTOR 427 2066 4676 8215




Table 2. Findings of the proposed schemes for the execution time (in second).

Techniques NXN
300 600 900 1200
FSSOR 8.13 227.95 113425  3728.92
FSAOR 8.61 230.17 1148.87  3692.74
- FSTOR 7.60 233.91 1188.08  3565.09
s HSSOR 2.39 81.24 404.15 1375.27
S HSAOR 1.72 73.76 369.91 1247.65
S HSTOR 2.55 84.84 413.84 1335.52
o QSSOR 0.39 14.99 81.55 293.92
QSAOR 0.56 15.83 84.47 292.46
QSTOR 0.38 16.46 87.40 279.95
FSSOR 10.69 251.72 1270.23  4077.22
FSAOR 10.27 248.24 1226.66  3976.33
N FSTOR 9.39 233.83 119450  3732.02
s HSSOR 2.95 86.77 44570 1423.27
S HSAOR 2.75 76.79 403.25 1263.63
S HSTOR 2.70 82.42 401.42 1326.65
o QSSOR 0.64 16.69 90.03 313.44
QSAOR 0.56 16.68 89.98 314.14
QSTOR 0.52 15.19 85.08 287.87
FSSOR 16.22 427.27 2190.45  7432.68
FSAOR 18.66 418.45 2073.25  7254.02
® FSTOR 15.20 369.55 1927.30  6300.13
5 HSSOR 5.16 154.79 783.72 2634.52
S HSAOR 4.80 137.18 721.94 2300.84
S HSTOR 4.30 135.81 661.90 2262.25
o QSSOR 0.92 30.04 166.12 567.28
QSAOR 1.08 29.24 161.76 570.33
QSTOR 0.77 25.35 144.71 488.66
FSSOR 11.02 281.85 144147 485357
FSAOR 12.52 281.78 142354 474321
< FSTOR 10.91 255.82 1292.23  4269.42
5 HSSOR 358 102.16 510.22 1686.65
2 HSAOR 3.08 92.44 471.17 1511.93
5 HSTOR 2.99 93.87 458.45 1527.54
o QSSOR 0.75 19.85 106.87 369.38
QSAOR 0.73 19.97 108.78 364.51
QSTOR 0.66 17.80 94.22 320.61

41 Discussion

The moment the potential values were gained, the route was constructed by carrying
out the steepest descent search following the initial points to the specified destination.
The development of path creation was brief, wherein the algorithm plainly picks the
lowest temperature value of its adjacent points from the current point. This action
remains until the marked target point is achieved. In accordance with the heat transfer
analogy with numerical computation, the paths were favourably generated in an ob-
stacle environment as shown in Fig. 3. Each and every single beginning point (green
point) successfully reached the designated destination position (red point) and evaded
various obstacles set in the C-space. Through Robot 2D Simulator [21], the simula-
tions solely evaluate known static two-dimensional indoor configurations.
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Fig. 3. The produced pathways from various start (green point) and goal (red point) points for
varied C-space.

To simplify the data, the line graph of the iteration counts and the time taken for
every condition was presented in Fig. 4 and Fig. 5 respectively. Clearly shows that all
four conditions provide a similar pattern, demonstrating that the QSTOR scheme
produced the best outcomes in developing and completing the path as compared to
other techniques for both iteration counts as well as CPU time. It can be deduced from
the results table and the line chart that utilizing the HS approach has resulted in a
nearly and more than 50% reduction than using the standard procedure. Whereas,
nearly 75% diminution has taken from QS technique as against conventional tech-
nique.
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Fig. 4. The performance graph concerning the iteration
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Fig. 5. The performance graph concerning the time taken in various C-space sizes.
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Concerning the computational complexity analysis of all iterative methods consid-
ered, it is assumed that each arithmetic operation requires one unit of computational
time. Theoretically, as the complexity analysis is reduced, the number of iterations
will become lesser thus decreasing the CPU time. Even though the number of arith-
metic operations for the families of the TOR method is more compared to families of
SOR as well as AOR, they converge faster since the presence of weighted parameters
[22]. The remaining points, on the other hand, will be omitted in the whole calculation
of the computational complexity since they will give no significance to the computa-
tion as it does not contribute to the changes in the calculation. After all, the loop for
the remaining point is only at one.

It is obvious that the computational complexities of the FS algorithms are reduced
drastically by the HS and QS algorithms by approximately 50% and 75%, respective-
ly. As discussed before, only half of the node points are involved during the iteration
process of the HS algorithms. For QS algorithms, the iteration process only involves a
quarter of node points. Therefore, by reducing the amount of node points involved
during the iteration process, convergence can be achieved much faster, thus improv-
ing the overall performance of the iterative methods and the path searching process.
As for the relation between computational complexities and CPU time, it shows that
the higher the complexity, often resulting in higher CPU time.

5 Conclusions

Owing to the fact the recently developed and newly found techniques, along with the
availability of fast machines today, this experiment demonstrates that the solution to
mobile path-planning problems through numerical approaches is, in fact, creative and
doable. The results table shows that the TOR iterative scheme, in contrast to conven-
tional SOR and AOR techniques, was faster in terms of iteration counts and pro-
cessing time. The results are unaffected by an increasing humber of obstacles because
the computing process is only becoming faster as the calculation ignores or disregards
the zones occupied by the obstacles. The edge of the proposed algorithm is that it
allows the robot to move from starting position to the ending position safely along the
shortest path, regardless of the obstacles’ size, form, or placement.
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