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Abstract— The channel assignment problem in wireless mobile 

network is consist of the assignment of appropriate frequency 

spectrum channels to requested calls while satisfying the 

electromagnetic compatibility (EMC) constraint. However with 

the limited capacity of wireless mobile frequency spectrum, an 

effective channel assignment technique is important for resource 

management and to reduce the effect of the interference. Most of 

the existing channel assignment techniques are based on 

deterministic methods. In this paper, an adaptive channel 

assignment technique based on genetic algorithm (GA) is 

introduced. The most significant advantage of GA based 

optimization in channel assignment problem is its capability to 

handle both the reassignment of existing calls as well as the 

allocation of channel to a new call in an adaptive process to 

maximize the utility of the limited resources. The population size 

is adapted to the number of eligible channels for a particular cell 

upon new call arrivals in order to achieve reasonable 

convergence speed. The MATLAB simulation on a 49-cells 

network model for both uniform and nonuniform traffic 

demands showed that the average new incoming call blocking 

probability for the proposed channel optimization method is 

lower than the deterministic channel assignment methods.  
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I.  INTRODUCTION  

The cellular concept is widespread among the fixed and 

mobile wireless network service due to the development of 

radio broadcasting for the mass population. In wireless mobile 

networks, the cellular principles divide the covered 

geographical areas into a set of service areas called cells [1]. 

Each cell consists of a number of mobile station (MS) such as 

mobile phone, which is connected to a radio base station 

(RBS). MS requires the allocation of channels from the RBS 

in order to establish the communication with a base station. 

The channel assignment mechanism comprises of efficient 

channel allocation among the radio cells in a cellular networks 

while maintaining a desirable level of EMC constraint and 

traffic demand. In addition, this mechanism plays a major role 

in minimizing the probabilities of call blocking or call 

dropping, at the same time maximizing the quality of services. 

In general, the channel assignment scheme can be 

classified into fixed channel assignment (FCA) and dynamic 

channel assignment (DCA). In FCA, the set of channels are 

equally allocated to each cell in advance permanently. On the 

other hand, DCA refers to the set of available channels are 

assigned dynamically to each cell upon request, instead of 

utilizing permanent allocation of channels as compared to 

FCA. The FCA system is simpler but does not adapt to the 

change of traffic demands. This deficiency is overcome by 

DCA approach since DCA surpass FCA in terms of its 

capability in dealing with changing traffic conditions, however 

it has the drawback of requiring more complex controlling and 

consuming more computational time under heavy traffic load 

[1].  

Most of the channel allocation methods are based on the 

deterministic methods. This kind of method requires a set of 

known input parameters and rules to predict the channel 

allocation results. However, the channel assignment becomes 

a complicated process to be solved by the deterministic 

methods due to its complexity and computational time 

consuming issues [2].     

Techniques such as frequency reuse have been proposed to 

maximize the channel capacity in cellular network. Frequency 

reuse concept comprises of using the same frequency channel 

simultaneously with other cells subject to the base transceiver 

station (BTS) distance. However this technique would lead to 

EMC interferences such as co-channel constraint (CCC), 

adjacent channel constraint (ACC), and co-site channel 

constraint (CSC). Hence it is very crucial to determine an 

efficient frequency reuse pattern to minimize the interference. 

There are numbers of suggested heuristics approaches in the 

literature to overcome the FCA and DCA problems based on 

fixed reuse distance concept such as neural networks, 

simulated annealing, Tabu search (TS) and GA [3]. 

Coincidence with the evolutionary computation, 

approaches based on neural networks (NNs) in [4], as well as 

based on simulated annealing (SA) in [5] have been 
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investigated. SA is a meta-heuristic method derived from 

statistical mechanics which perform using the neighborhood 

principle and measures potential based on cost function. SA 

achieves the global optimum asymptotically and thus solves 

the local optimum trap which would happen in NNs, however 

its drawback is that the rate of convergence is rather slow [6].  

A comparison between SA and TS methods indicates that 

the TS algorithm outperforms SA in terms of its capability of 

finding the minimum number of frequencies for channel 

allocation by consuming shorter computational time [7]. In 

general, TS is also a meta-heuristic technique based on 

neighborhood principle.  

The evolutionary algorithm approaches such as GA 

outperforms other methods in terms of the ability to explore 

information over search spaces [8]. This type of algorithm can 

be used to solve any complicated optimization task, such as 

optimal-local, multi-constrained and NP-complete problems 

[9].     

GA is originates from the principal of natural selection and 

survival of the fittest, for finding solutions to highly-nonlinear 

problems, which are characterized by multimodal solution 

space [10]. GA has been defined as highly parallel 

mathematics algorithm by [11] which transforming a set of 

individuals called population, each with an associated fitness 

value, into a new generation using operations based on the 

theories of evolution. 

Several GA-based approaches have been used to solve the 

channel assignment problem. For instance, [12] defined an 

asexual crossover and a special mutation to solve the channel 

assignment problem. However such crossover will easily 

destroy the structure of current solution and thus, causing the 

algorithm difficult to converge. In [6], the authors suggested a 

GA approach based on minimum separation encoding scheme, 

where the number of 1’s in each row of the binary assignment 

matrix corresponds to the number of channels allocated to the 

corresponding cell. It stated that this algorithm outperforms 

NN-based approach. 

In this paper, a DCA optimization algorithm based on GA 

will be presented to solve the channel assignment problem. 

The population size of this algorithm is designed to adapt to 

the number of eligible channels for a particular cell upon new 

call request, instead of maintaining a fixed population size 

throughout the simulation. This would ensure that a reasonable 

convergence speed can be achieved.  

II. OVERVIEW OF CHANNEL ASSIGNMENT PROBLEM 

A. Channel Assignment Constraints 

Radio transmission with frequency reuse concept in a 

channel would cause interferences with other channels. Such 

interference may degrade the quality of the service. Three 

types of interference are:  

1. CCC: Due to the allocation of the same channel to 

certain pair of the cells within the BTS distance or reuse 

distance simultaneously.  

2. ACC: Due to the allocation of the adjacent channels to 

certain pairs of cells simultaneously. 

3. CSC: Due to the allocation of channels in the same cell 

are not separated by some minimum spectral distance.  

These constraints are included as the EMC constraints. The 

channel assignment problem is shown to be NP-hard where it 

assigns the required number of channels to each cell in such a 

way that the interference is avoided and the frequency 

spectrum is used efficiently. These EMC constraints are 

known as hard constraints. 

Besides the hard constraints, there are soft constraints to 

help in reducing the call blocking probabilities. They are the 

resonance condition, packing condition, and the limitation of 

reassignment. 

The resonance condition allows the same channels to be 

assigned to cells that belong to the same reuse scheme, so that 

the use of channels can be maximized within the same reuse 

scheme. This would reduce the call blocking probabilities in a 

great extent.  

On the other hand, the packing condition is an approach to 

use the minimum number of channels each time a new call 

arrives. Hence this condition permits the repeated selection of 

the channels in use in other cells as long as the CCC 

interference is maintained.  

In DCA, the reassignment process upon a new call arrival 

will result in lower call blocking, but it is complex in both 

time and computation effort. Therefore the limitation of 

reassignment limits this process applied only to the cells 

which involved in new call arrival. It tries to assign the 

channels which are assigned before if possible. This could 

reduce the situation of excessive reassignment in a cell which 

would lead to increase in call blocking probabilities.  

B. Channel Reuse Scheme 

The reuse of channels is directly related to CCC 

interference. The channels to be assigned in different cells 

need to be separated by a reuse distance sufficient enough to 

reduce the CCC interference to a tolerable level. Then each 

channel can be reused many times.  

The reuse distance means the minimum distance required 

between the centers of two cells using the same channel to 

maintain the desired signal quality. The distance between the 

centers of two adjacent cells is considered as a unit distance. 

The cells with center-to-center distance equals to or multiple 

of the value of reuse distance belong to the same reuse 

scheme. Within the same reuse scheme, cells may use the 

same channels. 

The number of cells per reuse scheme determines the total 

number of channel sets that can be formed from the whole 

frequency spectrum. The longer the reuse distance, means the 
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smaller is the CCC interference level. However, this results in 

smaller reuse efficiency. Thus the reuse patterns need to be 

designed well by taking into consideration both the CCC 

interference level and the reuse efficiency. 

In this proposed approach, a reuse distance of three units 

has been considered to locate the co-channel cells. This 

divides the network topology model of 49-cells into seven 

different co-channel cell groups. The co-channel cell matrix is 

shown in Table I. 

According to Table I, the co-channel cell matrix is a 7×7 

matrix with rows represent the y coordinate of the cells and 

columns represent the x coordinate of the cells. Each cell in 

the same reuse scheme can be determined with Manhattan 

distance, where i=2, and j=1 so that i+j=3. This indicates that  

y coordinate moves one unit distance and x coordinate moves 

two units distance to obtain the required three unit of reuse 

distance. In Table I, the two cells belong to the same reuse 

scheme if the i
th

 row and j
th

 column of the co-channel matrix 

contains the same number for the two cells.  

C. Cellular Traffic Model 

In the design of this proposed algorithm, the cellular traffic 

model is simulated based on blocked-calls-cleared principle, 

means that an incoming call is served at the instance if a 

channel is available, otherwise the call is dropped with no 

queuing of blocked calls. There are 70 channels available in 

this model to be allocated to incoming calls. 

The cellular topological model consists of 49 hexagonal 

cells to form a parallelogram structure, with equal number of 

cells along both axes, as shown in Fig. 1. The traffic 

distribution on the cellular network can be either uniform or 

nonuniform distribution. In uniform cellular traffic 

distribution, every cell has the same traffic load or demand. 

On the other hand, in nonuniform cellular traffic distribution, 

there is different traffic load in each cell. The nonuniform 

traffic patterns implemented in this model is shown in Table 

II. Each of the value represents the average call arrival rate per 

minute for the corresponding cell. The average call holding 

time is 180 seconds.  

III. PROBLEM REPRESENTATION 

The channel assignment problem comprises of the 

assignment of an available channel to a new call with possible 

reassignment of channel to the ongoing calls in the cell. 

Assume that a new call arrives in cell k with t-1 existing calls 

before the arrival of the new call. Then a potential solution 

vector, Vk represents the assignment of channels to ongoing 

calls and the new call at cell k. This solution vector of length t 

will be expressed as a chromosome in the genetic algorithm 

representation, where each gene is a channel number being 

assigned to a call in cell k. The advantage of this 

representation is that the length of the solution vector is short 

and hence consumes shorter computational time to manipulate 

the vector.  

IV.  GENETIC REPRESENTATION 

Generally, GA provides an efficient approach in searching  

 

Figure 1.  49-cell cellular topological model 

for an optimum solution in the channel assignment problem. It 

is different from deterministic methods since GA uses 

randomization. Then the generic GA is modified to fit for use 

with the DCA optimization scheme.   

The outline of the generic genetic algorithm is consists of: 

1. Generation of initial population: The fundamental of GA to 

provide a generation of predetermined population size of 

chromosomes. 

2. Selection: During this stage, the evaluation of fitness of 

chromosome influences the selection chance of the 

chromosome. The selected fitter chromosome is then used 

for the reproduction of a new generation of chromosomes. 

3. Crossover: Upon selection of parents, both chromosomes 

perform the process of crossover of their genes to generate 

the child chromosome, according to a predefined crossover 

rate. 

4. Mutation: An evolutionary process of a chromosome 

which undergoing random changes of its genes according 

to a predefined mutation rate.  

TABLE I.  CO-CHANNEL CELL MATRIX 

y-

coordinate 

x-coordinate 

1 2 3 4 5 6 7 

1 1 5 6 3 2 4 7 

2 4 7 1 5 6 3 2 

3 3 2 4 7 1 5 6 

4 5 6 3 2 4 7 1 

5 7 1 5 6 3 4 4 
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y-

coordinate 

x-coordinate 

1 2 3 4 5 6 7 

6 2 4 7 1 5 6 3 

7 6 3 2 4 7 1 5 

TABLE II.  NONUNIFORM TRAFFIC DISTRIBUTION (SIMULATION 

CALLS/MINUTE) 

y-

coordinate 

x-coordinate 

1 2 3 4 5 6 7 

1 60 20 15 30 15 60 30 

2 60 30 15 30 20 20 60 

3 15 30 20 60 60 30 20 

4 60 15 20 30 20 30 60 

5 20 60 15 60 20 30 20 

6 30 20 20 60 30 30 60 

7 60 60 15 60 15 20 30 

A. Generation of Initial Population 

The algorithm starts by generating an initial population of 
possible channel allocation solutions. When a new call is 
arrives in cell k, a set of eligible channels I(k) is determined in 
order to assign a possible channel to the new call. In this case 

I(k) = S – (O(k)∪U(k)), where S is the total set of available 

channels, O(k) is the set of channels allocated to the ongoing 
calls in cell k, and U(k) is the set of channels used in the 
neighboring cells which less than the reuse distance with cell k. 
All the information can be obtained from the channels 
allocation matrix A. In the initial population P of λ solution 
vectors where λ is the magnitude of vector I(k), each solution 
contains a unique integer chosen from I(k). Then the remaining 
(t – 1) integers in all the solution vectors are the channels 
allocated to the ongoing calls in cell k.  

B. Evaluation by Fitness Function 

After the initial population of individuals is generated, a 

quality measure is necessary to decide the fitness value of one 

individual among the whole generation. The quality measure 

is called as fitness function.  

As mentioned before, besides the hard constraints, there 

are soft constraints such as packing condition, the resonance 

condition and the limitation of reassignment which further 

lower the call blocking probabilities and increase the quality 

of service. These soft constraints are modeled as the fitness 

function as shown in (1).  
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where 

k defines the cell coordinates where a call arrives; 

tk defines the total number of channels allocated to cell k; 

C defines the total number of cells in the network model; 

Vk defines the solution vector for cell k with dimension tk; 

Vk,j defines the j-th element of vector Vk; 

Ai,Vk,j defines the element at i-th row and Vk,j-th column of 

the channels allocation matrix A; 

dis(i,k) defines the distance between cells i and k; 

reuse(i,k) defines a function that returns a value of zero if 

the cells i and k belong to the same reuse scheme, otherwise 

return one. 

In (1), the first term represents the resonance condition, 
where the fitness value increases if the j-th element of vector Vk 
is in use in cell i as well, and cells i and k does not belong to 
the same reuse scheme. The second term represents the packing 
condition, where the fitness value decreases if the j-th element 
of vector Vk is in use in cell i as well, and cells i and k are free 
from CCC interference. The fitness value decreases with the 
distance between cells i and k. The last term on the other hand, 
represents the limiting reassignment condition, where the 
fitness value decreases if the new allocation for the ongoing 
calls in cell k is the same as the previous allocation. The 
minimization of this function value in (1) determines the fittest 
individual in order to find the optimal channel allocation 
solution. 

C. Mutation 

A fixed mutation rate is selected which indicates the 
probability for a gene in the chromosome to mutate. A low rate 
of mutation is sufficient to prevent any gene in the 
chromosome to remain fixed to a single value in the 
population. On the other hand, a high rate of mutation will 
result in random search for optimal solution. Therefore a 
moderated value needs to be selected to maintain a balance 
between such extremes. 

The parent chromosome is iterated through and randomly 
determines whether the channel number as the gene will mutate 
according to the mutation rate. When the channel number is 
decided to undergo mutation, it will swap the value with the 
corresponding vector of eligible channels. This process can 
always produce feasible offspring since it does not affect the 
length of the parent chromosome and does not produce any 
duplicate channel number. 

D. Crossover 

A crossover rate is selected to indicate the probability for 
parents’ vectors to crossover to produce a better child 
chromosome which takes the best characteristics from each of 
the parents. The proposed crossover strategy is one-point 
crossover to reduce the computational cost. A single crossover 
point is selected for both parents’ vectors. Then the channel 
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numbers which beyond that crossover point in both vectors are 
swapped, and results in the child chromosome.    

V. SIMULATION RESULTS AND DISCUSSIONS 

In the simulation, the performance of the proposed GA 

based algorithm for the channel assignment is evaluated in 

terms of the blocking probability for the new incoming calls. 

The blocking probability is calculated by the ratio of the total 

number of new call blocked and the total number of call 

arrived in the cellular network system. An example of a valid 

assignment of channels which fulfills the constraints and the 

required number of channels for the network of 49 cells is 

shown in Fig. 2. This simulation result is optimized by GA 

and run under nonuniform call traffic distribution as Table II. 

The performance of the proposed algorithm is compared 

with FCA scheme and DCA scheme which based on 

deterministic method, where the channel allocation results 

always the same at each simulation, without the optimization 

by GA. The DCA scheme with deterministic method is based 

on channel-ordering property, where the first channel in the 

set of eligible channels is given the highest priority to be 

assigned to new call request. Fig. 3 shows the call blocking 

probability result under nonuniform call traffic distribution 

using Table II as the initial traffic rates. On the other hand, 

Fig. 4 shows the call blocking probability performance under 

uniform traffic distribution with average 15 calls per minute as 

the initial traffic rate. The percentage increase of traffic load 

implies that the traffic rates for each of the cell increased by a 

percentage with respect to the initial traffic rates. From these 

results, DCA scheme based on GA produces the lowest call 

blocking probability compared to the DCA scheme of 

deterministic method and the FCA scheme, under both 

uniform and nonuniform call traffic distribution. The decrease 

in the call blocking probability is significant to maintain the 

reliability of the channel allocation scheme.  

Specifically, there are several parameters which are 

important in determining the convergence behavior of the 

genetic algorithm, such as population size, mutation rate and 

crossover rate. In this proposed algorithm, the population size 

is not fixed and is adapted according to the number of eligible 

channels for a particular cell.  

In Fig. 5, the effect of the crossover rate on the 

convergence speed is demonstrated, with the mutation rate 

fixed at 0.2.  The crossover rate of 0.6-0.8 is suggested in this 

algorithm in order to maintain a randomized gene exchange 

between individuals yet promote a reasonable continuity from 

the previous populations to the current populations, with 

convergence speed which is comparatively fast. 

On the other hand, in Fig. 6, the crossover rate is fixed at 

0.8, and the effect of the mutation rate on the convergence 

speed is investigated.  

The mutation probability of 0.2-0.4 is sufficient to avoid 

local minima when the population of chromosomes evolves 

from generation to generation, yet with a comparatively fast 

convergence speed compared to the simulation results of 

higher mutation probability. From the results shown in Fig. 5 

and Fig. 6, it can be observed that the proposed algorithm is 

not over sensitive to parameters tuning for moderately selected 

mutation rate and crossover rate values. The number of 

generations can be maintained at a desirable level with these 

moderately selected values. This is an advantage compared to 

some existing algorithm which is parameter- sensitive, such as 

simulated annealing.  

 

Figure 2.  A channel assignment result for the network under nonuniform 

traffic distribution at iteration=10 

 

Figure 3.  Call blocking probability performance of DCA-GA for the cellular 

network with nonuniform traffic distribution and comparison with the other 
channel allocation schemes 
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Figure 4.  Call blocking probability performance of DCA-GA for the cellular 

network with uniform traffic distribution and comparison with the other 

channel allocation schemes 

 

Figure 5.  Crossover rate and GA convergence  

 

Figure 6.  Mutation rate and GA convergence  

VI. CONCLUSION 

An optimization algorithm based on GA is proposed to 

solve the NP-complete channel assignment problem in a 

cellular mobile network. It is capable to mimic the 

evolutionary process in nature in order to optimize the channel 

assignment problem. Its characteristics to evolve through 

generations and to select the fittest optimum chromosomes 

enable it to be self-optimized from generation to generation. 

The concept of channel reuse scheme avoids the allocation 
of channels which would cause CCC interference. Hence the 
computation time to determine this type of interference in the 
process of channel allocation is reduced. Besides that, the 
combination of the integer genetic representation, the mutation 
operator and the crossover operator guarantees that the solution 
found is always feasible.  

 

 

 

 

 

The performance of the proposed algorithm has been 
investigated in terms of the call blocking probability which 
represents the quality of solutions. In addition, the effect of 
crossover rate parameter to the convergence speed to find the 
solution is investigated.  

Currently, the simulation is implemented based on 
sequential fashion, which is not significant in reducing the 
computational time. In the future research work, it is believed 
that by implementing the algorithm in parallel fashion, the 
optimization process will consume shorter computational time.      
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