Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology

Abstract

Central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X1: 99.5-290.5 min) and temperature (X2: 30.1-54.9 °C) of Schizophyllum commune aqueous extract with high antioxidant activities and total phenolic content (TPC). Results indicated that the data were adequately fitted into four second-order polynomial models. The extraction time and temperature were found to have significant linear, quadratic and interaction effects on antioxidant activities and TPC. The optimal extraction time and temperature were: 290.5 min and 35.7 °C (DPPH• scavenging ability); 180.7 min and 41.7 °C (ABTS•+ inhibition ability); 185.2 min and 42.4 °C (ferric reducing antioxidant power, FRAP); 290.5 min and 40.3 °C (TPC). These optimum conditions yielded 85.10%; 94.31%; 0.74 mM Fe2+ equivalent/100 g; 635.76 mg gallic acid equivalent/100 g, respectively. The yields of antioxidant activities and TPC obtained experimentally were close to its predicted values. The establishment of such model provides a good experimental basis employing RSM for optimizing the extraction time and temperature on antioxidants from S. commune aqueous extract.