UNIVERSITI MALAYSIA SABAH

	BORANG P	ENGESAHAN STATUS TESIS@
TUDUL: FUN	IGI ISOLATION	AND SCREENING FOR POTENTIAL
INHI	BITORS AGAIN	ST THE TWO-COMPONENT SYSTEM AND
THE S azah: SARS	SERINE/THREDNIN IANAMUDA SAI	ST THE TWO-COMPONENT SYSTEM AND DE PROTEIN RINASE IN ACTINOMYCETES. INS DENGAN KEPUJIAN (BIOTEKNOLOGI
	SESI PE	ENGAJIAN: MEI 2002 - APRIL 2005
aya VUN	SU CHIUN .	
	enarkan tesis (LPS) Sarjar dengan syarat-syarat keg	(HURUF BESAR) ma/Doktor Falsafab)* ini disimpan di Perpustakaan Universiti gunaan seperti berikut:
Perpustakaan		bah dibenarkan membuat salinan untuk tujuan pengajian sabaja.
tinggi.		(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam
tinggi.	kan (/)	kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
tinggi.	kan (/) SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan
tinggi. **Sila tanda	kan (/) SULIT TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

CATATAN: * Potong yang tidak berkenaan.

- ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi herkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
- @ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

FUNGI ISOLATION AND SCREENING FOR POTENTIAL INHIBITORS AGAINST THE TWO-COMPONENT SYSTEM AND THE SERINE/THREONINE PROTEIN KINASE IN ACTINOMYCETES

VUN SU CHIUN

THIS DISERTATION IS SUBMITED TO FULFILL THE PARTIAL REQUIREMENT TO OBTAIN THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

BIOTECHNOLOGY SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH

AALA

ERPUSTAKAA UTANA

4000006622

HAI

I affirm that this paper is of my own effort, except for materials referred to as cited in the reference section.

25 March 2005

VUN SU CHIUN HS 2002-3137

40000066

APPROVAL BY THE EXAMINERS

Signature

- Supervisor (Prof. Dr. Ho Coy Choke)
- Examiner 1 (Dr. Zaleha Abdul Aziz)
- Examiner 2 (Dr. Jualang Azlan bin Gansau)
- Dean of School of and Technology (Prof. Madya. Dr. Amran bin. Ahmed)

Hacarchako

ACKNOWLEDGEMENT

It cannot be denied that this thesis for the project II (SY 3233) needs a lot confidence, hard work and also commitment continuously. The success of the production of this thesis is the combination results from support as well as cooperation or collaboration that's been given in various forms by several of party. So that's why here I want to greet thankful to all the parties that's been so supportive directly or indirectly. Besides than that, I also want to apologize for the mistakes that's been done during the research.

First of all, I want to say a thousand thankful to my honored supervisor, Prof. Ho Coy Choke that's gave me a lots of supports, encouragement, guidelines, leadership and motivated advices along my thesis research. A million thank you as well given to Prof. Dr. Perumal, Dr. Zaleha Abdul Aziz, Dr. Lee Ping Chin and Dr. Jualang Azlan bin Gansau for their initiative advices and catalyzing supports. Besides than that, I also want to say thanks a lot to Cik Rokiah as the Tissue and Cell Culture lab's assistant and also Cik Radizah as the animal physiology lab's assistant that gave a lot of cooperation along this research was done.

Furthermore, I want to say a thousand sincerely thank you to the postgraduate students and they are Foo Sek Hin, Ho Wei Loon, Simon Ong Si Mon, Puah Seok Hwa and Hew Chaw Sen and also to all my course mates that's also doing their project under Prof. Ho's supervision. They are such as Bernard Tzing Ziang Vui, Chan Khai Wai, Mak Ken Hing, Teh Soo Chin, Jessica Peter, Jennifer Roland, Celistha, Tong Mei Ling, Ngao Wee Chen, Lim Siok Har, Yahya bin Jalal and the others students that have been so supportive, cooperating, helpful and always gave actuation as well as encouragement.

A million thanks and appreciation also wanted to be given to my both parents that are my mother and father that's always gave me moral supports and also encouragement in the making of this thesis.

V

ABSTRACT

The aim of this research study was to isolate different strains of fungi and conduct a screening test by the fungi extract (secondary metabolites) against the twocomponent system and ser/thr protein kinase which can be applied in treating disease such as tuberculosis (TB) disease. A total 12 soil samples were collected from different sites of Danum Valley tropical rainforest, Lahad Datu under identified diterocarps trees. A total of 36 strains of fungi had been isolated by using the Potato Dextrose Agar (PDA) media (Booth, 1971; Johnston & Booth, 1983) with chloramphenicol and sodium chloride at pH 6.7 and pH 4.4. Chloramphenicol is a type of antibiotic which inhibit the growth of the unwanted bacteria. All the fungi cultures showed well and good growth on the PDA media which supplemented with rich required nutrients. The sufficient nutrients provide enough required energy and raw material source for its growth as well as its cell proliferation. The fungal cultures were then purified on the same media without chloramphenicol and also sodium chloride (NaCl). The morphology of the cultures were analyzed, observed and recorded. The morphology that was mentioned was such as the fungi's aerial mycelia, substrate mycelia and their extracellular pigment colour. Fermentation with aerobic condition was carried out after the fungi were inoculated on the PDA slant agar media and the silica gel stock for stock storage usage. The fungal colonies were inoculated onto the 10ml fermentation media inside the 125ml conical flask. This process was carried out for 120 hours (5 days) at 28°C on the shaker incubator machine that's rotated at 220 r.p.m. Cell harvesting was carried out after the period with the 10ml of acetone for the cell lysis. The fungi extracts were then poured inside McCartney Bottle. The acetone extracts were then tested against the Two-Component System (PhoP/PhoR) in M.smegmatis H8000 and Ser/Thr Protein Kinase (AfsK/AfsR) in S.griseus H10000. A total of 4 extracts showed as potential inhibitors against the PhoP/PhoR pathway in M.smegmatis (mc1255) strain H8000. The 4 extracts with strain number H9984, H9989, H9990 and H9995 showed inhibition zone surround the paper discs on 100µM MgSO4.7H2O plate where the growth of the M.smegmatis was inhibited and not on the 1mM plate where none of the M.smegmatis growth was

inhibited by the extracts for both of the screening test which been conducted. A total of 5 extracts (H9386, H9387, H9407, H9409 and H9986) that showed activity on the 1.5% D(+)Glucose plate where inhibition zone seems to be appeared surround the paper discs which been soaked with the 5 extracts above but not on the 1.5% D-Mannitol plate. These 5 extracts expected to inhibit either only the sporulation or the entire growth of the *S.griseus* strain H10000 where none of the microscopic observation was been carried out to determine for the potential inhibitor among the 5 extracts.

CONTENT

TITLE PAGEiiDECLARATIONiiiAPPROVALivAPPROVALvACKNOWLEDGEMENTvABSTRACTviCONTENTSviiiLIST OF TABLExiii

LIST OF FIGURE	xv
LIST OF PHOTO	xvii
LIST OF ABBREVIATION	xix

CHAPTER 1 INTRODUCTION

1.1	Fungi		1
1.2	Signal	Transduction	2
	1.2.1	Signal transduction and the two-component regulatory	
		systems	2
	1.2.2	Sensor kinases and response regulators	4
	1.2.3	Signal transduction and the Serine/Threonine protein	
		kinases regulatory systems in prokaryotes	6
1.3	Danu	n Valley Field Centre	7
1.4	Objec	tives	8

CHAPTER 2 LITERATURE REVIEW

2.1	Fungi Definition	10
2.2	Characteristics of Fungi	14

Pages

2.3	Secon	dary Metabolites from Fungi	16
	2.3.1	Introduction	16
	2.3.2	Definition of secondary metabolites	16
	2.3.3	Polyketide metabolites	18
	2.3.4	Aromatic compounds	20
	2.3.5	Amino acid pathway	21
	2.3.6	Combination of pathways	21
	2.3.7	Plant growth regulators	22
	2.3.8	Toxins	23
	2.3.9	Diversity of metabolites from fungi	25
2.4	Signal	Transduction	27
2.5	Two-C	Component System	29
2.6	Serine	/Threonine Protein Kinase	31
2.7	Мусо	bacterium tuberculosis	33
	2.7.1	General characteristics	34
	2.7.2	Cell wall structure	36
	2.7.3	Tuberculosis (TB) disease	38
	2.7.4	Characteristics of a Mycobacterium	40
	2.7.5	The difference between latent tuberculosis	
		infection and tuberculosis disease	41
2.8	Mycol	bacterium smegmatis	42
2.9	PhoP/	PhoR Pathway in Mycobacterium tuberculosis	43
2.10	Strept	omyces	47
2.11	Strept	omyces griseus	48
2.12	Afsk//	AfsR Pathway in Streptomyces griseus	49

CHAPTER 3 METHODOLOGY

3.1	Research Methodology	55
3.2	Apparatus and Equipments	56

3.3	Soil S	ampling	57
	3.3.1	Equipments and apparatus	57
	3.3.2	Method	57
3.4	Isolati	ion of Fungi	59
	3.4.1	PDA isolation media	59
	3.4.2	Method	59
3.5	Purifi	cation of Fungi	61
	3.5.1	PDA purification media	61
	3.5.2	Method	61
3.6	Fungi	Stock Storage	63
	3.6.1	Slant agar stock	63
		a. Slant agar media	63
		b. Method	63
	3.6.2	Silica gel stock	64
		a. Silica gel media	64
		b. Method	64
3.7	Ferme	entation of Fungi	65
	a.	Fermentation media	65
	b.	Method	65
3.8	Scree	ning Test against the Target System	66
	3.8.1	PhoP/PhoR system in Mycobacterium	
		smegmatis H8000	66
		a. M9 Minimal Medium plus trace	
		elements (Mycobacterium smegmatis H8000)	66
		b. Method	67
	3.8.2	AfsK/AfsR system in Streptomyces griseus	
		IFO13350	69
		a. YPD (Yeast Peptone Dextrose) media	69
		b. Method	69

x

CHAPTER 4 RESULT

4.1	Resea	rch Study Main Objectives	71
4.2	Backg	round of the Research Study's Location	72
	4.2.1	Soil sampling	72
	4.2.2	Sampling location	74
	4.2.3	Soil pH determination	78
4.3	Fungi	Culture, Growth and Diverse Morphology	79
	4.3.1	Fungi isolation using PDA with chloramphenicol and	
		sodium chloride	79
	4.3.2	Fungi purification	81
4.4	Fungi	Culture Stock Storage	86
	4.4.1	PDA slant agar stock	86
	4.4.2	Silica gel stock	87
4.5	Ferme	entation and Extraction of Fungi Culture	88
4.6	Screen	ning Test against Target System	90
	4.6.1	Two-component system (PhoP/PhoR)	94
	4.6.2	Serine threonine protein kinase (AfsK/AfsR)	104

CHAPTER 5 DISCUSSION

5.1	Select	tion for the Research Study Location Factors	113
5.2	Soil S	ampling and pH Determination	114
5.3	Isolati	ion of Fungi Culture and Its Growth	116
5.4	Purifi	cation of Fungi Culture and Its Growth	118
5.5	Stock	Storage for the Fungi Culture	120
5.6	Ferme	entation and Fungi's Secondary Metabolites Extraction	121
5.7	Screen	ning Test for Potential Inhibitors against Target System	123
	5.7.1	Two-component system (PhoP/PhoR)	123
	5.7.2	Serine threonine protein kinase (AfsK/AfsR)	126

CHAPTER 6 CONCLUSION

REFERENCES

133

130

LIST OF TABLES

No. of Table

Pages

2.1	Fungal secondary metabolites associated with sporulation	
	processes and development.	26
3.1	List of apparatus and equipments.	56
3.2	List of equipments and apparatus for soil sampling.	57
3.3	PDA isolation media chemicals.	59
3.4	PDA purification media chemicals.	61
3.5	Slant agar media chemicals.	63
3.6	Silica gel media chemicals.	64
3.7	Fermentation media chemicals	65
3.8	List of M9 Minimal Medium chemicals	66
3.9	List of the trace elements chemicals	67
3.10	List of the chemicals substances that were added after	
	autoclaving process.	67
3.11	YPD (Yeast Peptone Dextrose) media chemicals	69
4.1	List of the soil samples that had been collected	
	underneath the different type of identified tress at 4 different	
	areas at Danum Valley Primary Rainforest.	73
4.2	List of the pH value for soil samples that been collected.	78
4.3	List of fungi strains that were isolated by using the PDA	
	isolation media	79
4.4	List of the aerial mycelia, substrate mycelia and extracellular	
	pigments colour from the fungi culture strains that's been	
	purified on the PDA media.	81
4.5	List of the fungi extracts that were tested for the	
	PhoP/PhoR in M.smegmatis (mc1255) strain H8000 and	
	Afsk/AfsR in S.griseus (IFO13350) H10000	90

4.6	Result for the screening test against the PhoP/PhoR in	
	M.smegmatis strain H8000	95
4.7	Result for the screening test against the AfsK/AfsR in	
	S.griseus strain H10000	104

xiv

LIST OF FIGURES

No. of figure

1.1	Penicillium notatum is a species of fungus that was used as	
	the original source of the antibiotic penicillin.	2
1.2	Species within the genus Penicillium produce flavors for blue	
	and white cheeses, such as Gorgonzola.	2
1.3	Typical two-component signal transduction system	
	(Barrett and Hoch, 1998).	4
1.4	Danum Valley Conservation Area that locates at 81km west	
	of Lahad Datu	7
1.5	Location of the Danum Valley Conservation Area	8
2.1	The linkage between the sugars is like that of cellulose and	
	peptidoglycan and produces the same sort of structural rigidity.	15
2.2	Structure of Aflatoxin B1.	18
2.3	Structure of Patulin.	19
2.4	Structure of Zearalenone.	20
2.5	Structure of Sporodesmin.	23
2.6	Structure of Vomitoxin.	24
2.7	Basic two-component phosphotransfer scheme	
	(West and Stock, 2001).	29
2.8	Phosphotransfer scheme of a phosphorelay system	
	(West and Stock, 2001).	30
2.9	Colonies of Mycobacterium tuberculosis on Lowenstein-Jensen	
	medium.	35
2.10	Mycobacterium tuberculosis that stained with Acid-fast stain.	36
2.11	Thin section transmission electron micrograph of Mycobacterium	
	tuberculosis.	40

2.12	Model describing the signals controlling expression of PhoP	
	-PhoQ-regulated determinants and the interaction between	
	the PhoP-PhoQ and PmrA-PmrB two-component systems,	
	as well as some of the genes and phenotypes governed by	
	the PhoP PhoQ system.	47
2.13	Edge of an agar colony of the actinomycete, Streptomyces	
	griseus, viewed at low magnification (x10 objective of a	
	compound microscope). Like all actinomycetes, this species	
	grows as narrow filaments, with aerial branches that end in	
	chains of spores. The spirally shaped aerial spore chains typical	
	of the genus Streptomyces are seen in this image.	49
2.14	Higher magnification of some of the aerial hyphae and spore	
	chains.	49
2.15	AfsK/AfsR pathway in Streptomyces griseus	50
3.1	A brief summary of research methodology.	55
3.2	Serial Dilution-Plating Strategy	60
3.3	Isolation of Single Colonies.	62
4.1	Map of the Nature Trail and some of the soil samples	
	that been collected.	74
4.2	Map of the Dr.Clive Marsh Trail and some of the soil	
	samples that been collected.	75
4.3	Map of the Tembaling Trail and some of the soil samples	
	that been collected.	76
4.4	Map of the Newbery Plot and some of the soil samples	
	that been collected.	77

xvi

LIST OF PHOTOS

No. of Photo

Pages

4.1	12 soil samples (DV1, DV2, DV3, DV4, DV5, DV6, DV7,	
	DV8, DV9, DV10, DV11 and DV12) that had been	
	collected at Danum Valley Primary Rainforest.	73
4.2	Aerial mycelia (Top picture), substrates mycelia (Bottom	
	picture) and extracellular pigments for fungi strain H9386	
	(DV71-1).	83
4.3	Aerial mycelia (Top picture), substrates mycelia (Bottom	
	picture) and extracellular pigments for fungi strain H9387	
	(DV71-2).	84
4.4	Aerial mycelia (Top picture) and substrates mycelia	
	(Bottom picture) for fungi strain H9406 (DV76-1).	85
4.5	(From left) PDA slant agar stocks for fungi strains H9386,	
	H9387, H9388, H9389, H9390, H9391, H9392, H9393,	
	H9394 and H9395 that were labeled.	87
4.6	(From left) Silica gel stock with pH 4.4 for fungi strains	
	H9386, H9387, H9388, H9389, H9390, H9391, H9392,	
	H9393, H9394 and H9395 that were labeled.	88
4.7	Fungi acetone crude extracts in a McCartney bottle. From	
	left strain H9386, H9387, H9388, H9389, H9390, H9391,	
	H9392, H9393, H9394 and H9395.	89
4.8	Inhibition zone appeared around the paper disc number 2	
	(H9990) which starting clockwise from paper disc number 1	
	that marked with blue dot on the $100\mu M$ MgSO ₄ .7H ₂ O plate.	100
4.9	Inhibition zone appeared around the paper disc number 2	
	(H9995), 3 (H9984), 4 (H9977) and 10 (H9978) which	
	starting clockwise from paper disc number 1 that marked with	
	blue dot on the $100\mu M$ MgSO ₄ .7H ₂ O plate.	101

xvii

4.10	Inhibition zone appeared around the paper disc number 1	
	(H9998), 2 (H9989) and 3 (H9980) which starting	
	clockwise from paper disc number 1 that marked with blue	
	dot on the 100µM MgSO ₄ .7H ₂ O plate.	102
4.11	Inhibition zone appeared around the paper disc number 1	
	(H9989), 2 (H9990), 3 (H9995) and 8 (H9984) which	
	starting clockwise from paper disc number 1 that marked with	
	blue dot on the 100µM MgSO ₄ .7H ₂ O plate (Top picture).	103
4.12	Inhibition zone appeared around the paper disc number 1	
	(H9386), 4 (H9391) and 8 (H9387) which starting clockwise	
	from paper disc number 1 that marked with blue dot on	
	the 1.5% D(+)Glucose plate.	109
4.13	Inhibition zone appeared around the paper disc number 6	
	(H9409) and 8 (H9407) which starting clockwise from	
	paper disc number 1 that marked with blue dot on	
	the 1.5% D(+)Glucose plate.	110
4.14	Inhibition zone appeared around the paper disc number 7	
	(H9420) which starting clockwise from paper disc number 1	
	that marked with blue dot on the 1.5% D(+)Glucose plate.	110
4.15	Inhibition zone appeared around the paper disc number 5	
	(H9986) which starting clockwise from paper disc number 1	
	that marked with blue dot on the 1.5% D(+)Glucose plate.	111
4.16	Inhibition zone appeared around the paper disc number 1	
	(H9386), 3 (H9986), 4 (H9409), 6 (H9387) and lastly 7	
	(H9407) which starting clockwise from paper disc number 1	
	that marked with blue dot on the 1.5% D(+)Glucose	
	plate (Top picture). None of inhibition zone seems to be	
	appeared on the 1.5% D-Mannitol plate (Bottom picture).	112

LIST OF ABBREVIATIONS

PDA	Potato Dextrose Agar
TCS	Two-Component System
STPKs	Serine/Threonine Protein Kinase
e.g.	exempli gratis
Ser/Thr	Serine/Threonine
НРК	Histidine Protein Kinase
Р	Phosphoryl group
DNA	Deoxyribonucleic acid
PknA	Protein kinase A
Sq.	Square
Km.	Kilometer
F.	Fusarium
В	Beta
RNA	Ribonucleic Acid
UV	Ultra Violet
psi	pound per square inch r.p.m.
НК	Histidine Kinase
RR	Response Regulator
ATP	Adenosine Triphosphate
D	Domain
ADP	Adenosine Diphosphate
E.coli	Escherichia coli
N-terminal	Nitrogen terminal
sp.	species
LPS	Lipopolysaccharide
ТВ	Tuberculosis
AIDS	Acquired Immune Deficiency Syndrome
μт	micrometer
M.tuberculosis	Mycobacterium tuberculosis

CFA	Freund's Complete Adjuvant
HIV	Human Immunodeficiency Virus
midTB	Multiple-Drug-Resistant TB
B.C.	Before Christ
LTBI	Latent Tuberculosis Infection
G+C	Guanosine plus Cytosine
Mg ²⁺	Magnesium
Ca ²⁺	Calcium
Mn ²⁺	Manganese
S.typhimurium	Salmonella typhimurium
Ba ²⁺	Barium
Fe ³⁺	Ferum
S.coelicolor A3(2)	Streptomyces coelicolor
Act	Actinorhodin
Red	Undecylprodigiosin
CDA	Calcium-dependent antibiotic
Mmy	Methylenomycin
СМ	Cell Membrane
C-terminal	Carbon-terminal
YMP	Yeast Mannitol Peptone
nM	nano Molar
IFO	Institute Fermentation of Osaka
NaCl	Sodium chloride
⁰ C	Degree Celsius
YPD	Yeast Peptone Dextrose
μΜ	micro Molar
mM	mili Molar

CHAPTER 1

INTRODUCTION

1.1 Fungi

Fungi are plant-like organisms that lack with chlorophyll organelle. Fungi are one of the five kingdoms of life. Many of the fungi are good as well as useful (e.g. edible mushrooms) while some of them causing problems (e.g. fungi that can injure other plants and people). There are over 100,000 species of fungi. Fungi usually absorbed their food from others; this was because that it doesn't have any chlorophyll pigment. They as well didn't use the light to make their own food and them also able to live in many of the damp and dark places.

Fungi are a group of organisms and micro-organisms that are classified within their own kingdom that is the fungal kingdom where they are neither plant nor animal. Fungi draw their nutrition from decaying organic matter, living plants and even animals. They do not photosynthesize as they totally lack with the green pigment chlorophyll it is present in many of the green plants. Many of the fungi play an important role in the natural cycle as decomposers it helps to return the nutrients to the soil back, they are not all destructive. Fungi are even used for medical purposes, such as species within the *penicillium* genus which provide antibiotics, e.g. penicillin.

Figure 1.1(a) *Penicillium notatum* is a species of fungus that was used as the original source of the antibiotic penicillin.

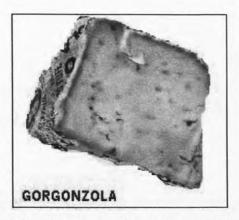


Figure 1.1(b) Species within the genus *Penicillium* produce flavors for blue and white cheeses, such as Gorgonzola.

1.2 Signal Transduction

1.2.1 Signal transduction and the two-component regulatory systems.

Two-component systems (TCS) and eukaryotic-like Ser/Thr protein kinases comprise major components of the signal transduction machinery of *Mycobacterium tuberculosis* (Tyagi and Sharma, 2004).One of the best understood systems among

the signal transduction protein is the DevR-DevS two-component system (Tyagi and Sharma, 2004).

Most all of the bacteria regulate cell metabolism in response to its wide variety of environmental fluctuations, these includes;

- a) Temperatures changes.
- b) Changes in pH.
- c) Oxygen availability.
- d) Changes in availability nutrients.
- e) Changes in number of cells presents.

So, that's why there's must be a mechanisms by which the bacteria receive signals from the environment and then transmitted them to specific target to be regulated. However, in many cases the external signals is not transmitted directly to the regulatory protein. Instead, a signal is first detected by a sensor and transmitted in a changed form to the rest of the regulatory machinery. This process is called "Signal Transduction" (Madigan and Martinko, 2003).

1.2.2 Sensor kinases and response regulators.

The two-component system is the regulatory systems which cells sense and respond to the environmental signals. These two-component systems include two different proteins;

- a) Sensor protein (located in the cell membrane).
- b) Response regulator protein (Madigan and Martinko, 2003).

Sensor protein has a kinase activity and referred to as a sensor kinase. Kinase is an enzyme that phophorylates compounds. The mechanism of the two-component signal transduction system is showed as figure below;-

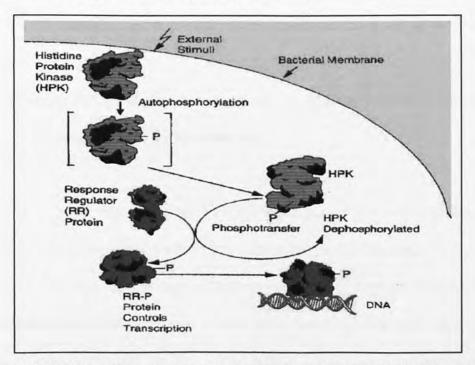


Figure 1.2.2 Typical two-component signal transduction system (Barrett and Hoch, 1998).

REFERENCES

- Alexopoulos, C. J., Mims, C. W. and Blackwell, M., 1996. Introductory Mycology. Ed. 4th. John Wiley and Sons, New York, USA.
- Amerada, T., and Horinouchi, S., 2001. Autophophorylation of a bacterial serine/threonine protein kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. *Journal of Bacteriology* 183 (19), 5506-5512.
- Barrett, J. F., and Hoch, J. A., 1998. Two-component signal transduction as a target for microbial anti-infective theraphy. *Antimicrobial Agents and Chemotherapy* 42(7), 1529-1536.
- Brian, P., Riggle, P. J., Santos, R. A., and Champness, W. C., 1996. Global negative regulation of *Streptomyces coelicolor* antibiotic synthesis mediated by an *absA*-encoded putative signal transduction system. *Journal of Bacteriology* 178(11), 3221–3231.
- Calvo, A. M., Wilson, R. A., Jin, W. B., and Keller, N. P., 2002. Relationship between secondary metabolism and fungal development. *Microbiology and Molecular Biology Reviews* 66(3), 447–459.
- Carroll, G. C., and Wicklow, D. T., 1992. The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Deker, Inc., New York.
- Cooke, R. C., and Whipps, J. M., 1993. Ecophysiology of Fungi. Blackwell Scientific Pub., London, U.K.
- Dix, N. J., and Webster, J. W., 1995. Fungal Ecology. Capman and Hall. London, U.K.

- Fontan, P. A., Walters, S., and Smith, I., 2004. Cellular signaling pathways and transcriptional regulation in *Mycobacterium tuberculosis*: Stress control and virulence. *Current Science* 86(1), 122-134.
- Gehring, A. M., Nodwell, J. R., Stephen M., Beverley, S. M., and Losick, R., 2000. Genomewide insertional mutagenesis in *Streptomyces coelicolor* reveals additional genes involved in morphological differentiation. *PNAS* 97(17), 9642-9647.

Griffin, D., 1993. Fungal Physiology. Ed. 2nd. Wiley-Liss. New York.

- Groisman, E. A., 2001. The pleiotropic two components regulatory system PhoP-PhoQ. Journal of Bacteriology 183(6), 1835-1842.
- Hawksworth, D. L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. *Mycological Research* **95**, 641-655.
- Hawksworth, D. L., Kirk, P. M., Sutton, B. C., and Pegler, D. N., 1995. Ainsworth and Bisby's Dictionary of the Fungi. Ed. 8th. CAB International, Wallingford, United Kingdom. 616.
- Hoch, J. A., and Silhavy, T. J., 1995. Two Component Signal Transduction. The American Society for Microbiology.
- Horinouchi, S., 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30, 462–467.
- Koretke, K. K., Lupas, A. N., Warren, P. V., Rosenberg, M. and Brown, J. R., 2000. Evolution of two-component signal transduction. *Mol. Biol. Evol.* 17, 1956-1970.

- Kwon-Chung, K. J., and Bennett, J.E., 1992. Medical Mycology. Lea and Febiger, Philadelphia.
- Loomis, W. F., Kuspa, A., and Shaulsky, G., 1998. Two-component signal transduction systems in eukaryotic microorganisms. *Curr. Opin. Microbiol.* 1, 643-648.
- Madigan, M. T., Martinko, J. M., and Parker, J., 2003. Brock Biology of Microorganisms. Ed. 10. Prentice Hall, USA.
- Nadvornik, R., T. Vomastek, J., Janecek, Z., Technikova, and Branny, P., 1999. Pkg2: a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor. J. Bacteriol 181, 15–23.
- Onaka, H., Ando, N., Nihira, T., Yamada, Y., Beppu, T., and Horinouchi, S., 1995. Cloning and characterization of the A-factor receptor gene from *Streptomyces griseus*. Journal of Bacteriology 177(21), 6083–6092.
- Ryding, N. J., Bibb, M. J., Molle, V., Findlay, K. C., Chater, K. F., and Buttner, M. J., 1999. New sporulation loci in *Streptomyces coelicolor A3(2)*. Journal of Bacteriology 181(17), 5419–5425.
- Soncini, F. C., and Groisman, E. A., 1996. Two-component regulatory systems can interact to Process Multiple Environmental Signals. *Journal of Bacteriology* 178(23), 6796-6799.
- Soncini, F. C., Vescovi, E. G., Solomon, F., and Groisman, E. A., 1996. Molecular basis of the magnesium deprivation response in *Salmonella typhimurium*: Identification of PhoP-regulated genes. *Journal of Bacteriology* **178**(17), 5092-5099.

- Sevcikova, B., and Kormanec, J., 2004. Differential production of two antibiotics of Streptomyces coelicolorA3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch Microbiol 181, 384-389.
- Smith, I., 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clinical Microbiology Reviews 16(3), 463-496.
- Stephenson, K., and Hoch, J. A., 2002. Two-component and phophorelay signaltransduction systems as therapeutic targets. *Current Opinion In Pharmacology* 2, 1-6.
- Taylor, J. W., Bowman, B., Berbee, M. L., and White, T. J., 1993. Fungal model organisms: phylogenetics of Saccharomyces, Aspergillus and Neurospora. Systematic Biology 42,440-457.
- Tyagi, J. S., and Sharma, D., 2004.Signal transduction systems of Mycobacteria with special reference to Mycobacterium tuberculosis. Current Science 86(1), 93-102.
- Umeyama, T., Lee, P. C., Ueta, K., and Horinouchi, S., 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145, 2281-2292.
- Vescovi, E. G., Ayala, Y. M., Cera, E. D., and Groisman, E. A., 1997. Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. The Journal of Biological Chemistry 272(3), 1440-1443.
- West, A. H., and Stock, A. M., 2001. Histidine kinases and response regulator proteins in two-component signaling systems. *Trends Biochem. Sci.* 26, 369-376.

