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ABSTRACT 

The concentrations of Total Fe (Fer) and distribution of Fe2
+ and Fe3

+ in selected 

AMD and AMD-contaminated river water samples from Ranau, Sabah were 

determined according to the standard method for the examination of water and 

wastewater. The pH and Eh values of these samples were also analyzed. The results 

obtained showed that Fer in all AMD samples were relatively high in the range of 

0.29-11.90 mglL and comprising of 64.5% Fe(III) and 35.5% Fe(II). FeT and Fe(JII) 

were generally high at low pH (i.e. pH<4) and oxidizing (Eh>545m V) condition 

whereas Fe(D) was significant at lower Eh (i.e <545mV). The river water samples 

were less acidic (i.e. pH>4), and therefore, comparatively low in FeT at 0.16 mglL-

0.25 mg/L with only Fe(Ill) present as the dominant species. These results indicate 

that the distribution of Fe(III) and Fe(ll) species and subsequently the concentration of 

FeT in the AMD and AMD-contaminated river water samples was strongly influenced 

by the prevailing pH and Eh. 
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ABSTRAK 

Jumlah kepekatan logam ferum terlarut (FeT) dan juga taburan spesis Fe2
+ dan Fe3

+ 

dalam saliran asid lombong (AMD) dan air sungai yang tercemar dengan AMD telah 

ditentukan berdasarkan kaedah piawai untuk analisis air dan air tercemar. Selain itu, 

nilai pH and Eh setiap sam pel juga diukur. Hasil yang diperolehi menunjukkan bahawa 

FeT sampel AMD secara relatifuya adalah tinggi iaitu dalam julat bacaan 0.29-11.9 

mg/L dan ianya terdiri daripada 64.5% Fe(III) dan 35.5% Fe(ll). Kandungan FeT dan 

Fe(III) adalah tinggi terutamanya pada keadaan pH yang rendah (iaitu pH<4.0) dalam 

keadaan pengoksidaan yang tinggi (Eh>545m V). Kandungan Fe(II) sebaliknya 

didapati signifikan pada nilai Eh yang lebih rendah (Eh<545mV). Sampel air sungai 

yang dikaji adalah kurang asidik (iaitu pH>4) dan dengan itu, FeT adalah rendah iaitu 

pada kepekatan 0.16-0.25 mg/L, dan spesis Fe yang dominan ialah Fe(III). Pada 

keseluruhannya, taburan Fe(IT) dan Fe(III) dan selanjutnya kepekatan FeT dalam AMD 

dan air sungai yang tercemar dengan AMD sangat bergantung kepada nilai pH dan Eh 

semasa. 
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CHAPTER 1 

INTRODUCTION 

1.1 Context and Relevance of Study 

Pyrite, FeS2, is a common sulfide mineral that contains iron (Fe) as its major element. 

It can be found in most magmatic and igneous rocks, sedimentary deposits as well as 

hydrothermal deposits. As such, pyrite is often exposed to the environment by mining 

and metallurgical activities. The oxidation of exposed pyrite through weathering 

process often brought about the formation of acid mine drainage, an environmental 

problem of serious concern today in mining industry (Evangelou, 1995). 

The mechanism of acid mine drainage formation is a combination of two 

reactions involving the interchanging oxidation states of iron. The oxidation of pyrite 

can be initiated by ferric (Fe3
) ions or oxygen followed by a further oxidation of 

ferrous (Fe2) ions in the presence of oxygen (Evangelou, 1995; Singer & Stumm, 

1970). This reaction resembles a cyclic reaction mechanisms resulting in products 

such as sulfuric acid (H2S04), sulfate ions, ferrous ions and ferric ions. 
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Fe2+ produced can substantially oxidize to Fe3+, which in turn may contribute 

towards the oxidation of the parent mineral (Sengupta, 1993). At pH > 3.5, Fe3+ may 

also undergo hydrolysis to release additional acidity (Singer & Stumm, 1970). The 

highly acidic environment formed during this oxidation process further promotes the 

dissolution of the mineral matrix and cause the mobilization of trace metals into 

solution (Sengupta, 1993). As a consequence, seepages or leachates from mine waste 

dumps often display low pH values (i.e. pH < 3.5) and an elevated levels of dissolved 

ions, which therefore commonly termed as acid mine drainage, AMD (Evangelou, 

1995; Sengupta, 1993; Stumm & Morgan, 1996). 

Direct inputs of AMD into receiving water can lead to a decrease in pH and 

subsequent increase in the concentration of dissolved metals (including Fe) (Sengupta, 

1993). The total dissolved Fe, in this case, is contributed by Fe2+ and/or Fe3
+. Upon 

released into receiving streams, AMD tends to be diluted fairly rapidly due to mixing 

and dilution (Baker, 1994). This phenomenon coupled with competing chemical 

processes decisively affect the distribution of iron (Fe2+ and Fe3
) (Allen et a!. , 1995; 

Baker, 1994; McKnight et a!., 2001). 

As the occurrence of redox process is profound in aqueous system, iron may 

exist as free Fe2+ or Fe3+ ions or as organic ferrous and ferric complexes (Allen et a!., 

1995; Clarkson et ai., 1999; Luther, 1995). As such, the proportion or activity of Fe2+ 

and Fe3+ (i.e. Fe3+/Fe2+ratio) will alter as iron participates in redox reactions 

(O'Sullivan et a!. , 1997). 
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According to McKnight et 01. (2001), the redox chern istry of iron often links to 

chemical reactions such as photoreduction of Fe3
+, dissolution-precipitation of ferric 

hydroxides as well as microbial oxidation of Fe2
+. Other chemical reaction includes 

complexation reaction with organic ligands (Allen et 01., 1995). 

Besides redox potential, the chemical stability of iron species also depend on 

other factors. Among these factors include pH, dissolved oxygen and temperature of 

the aqueous system (Bachman et 01.,2001; Baker, 1994; Luther, 1995; O'Neill, 1993; 

O'Sullivan, 1997). In AMD, the oxidation of Fe2
+ to Fe3

+ is a pH dependent reaction 

(Sengupta, 1993). In fact, it is very slow below pH 6 (Stumm & Morgan, 1996; 

Evangelou, 1995). However, when pH approaches neutrality where aerobic condition 

(high Eh) is distinct, Fe3+ is by far the predominant species and it is prone to undergo 

hydrolysis to form the insoluble ferric hydroxides polymers with hydroxyl ions 

(Clarkson et ai., 1991; 0' Neill, 1993; Silver, 1993). Under suitable condition (i.e. 

negative Eh), Fe3
+ can be reduced back to the soluble Fe2+ (O'Neill, 1993). 

As described above, the speciation of Fe (as Fe2+ & Fe3+) in AMD and AMD

contaminated water is dependent on several factors, the dominant being redox 

potential (Eh) and pH. The chemical speciation can have a profound effect on the total 

concentration of dissolved Fe, as well as the overall water chemistry. Information on 

iron chemistry in AMD and AMD-contaminated water is, however, lacking. 

Therefore, studies on the aqueous geochemistry of iron are important towards the 

understanding the behavior of Fe in AMD as well as in AMD-contaminated water. 
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In Sabah, AMD is prevalent at a former copper mine in Ranau and several 

rivers in the area are known to be affected by AMD inputs causing a considerable 

damage to the river ecosystem (Jopony & Murtedza, 1994). 

1.2 Objectives 

The objectives of this study are: 

a. To determine the total concentration of Fe (FeT) in AMD and AMD

contaminated river water samples 

b. To determine the concentration and distribution of ferrous ion, Fe2+ and 

ferric ion, Fe3
+ in AMD and AMD-contaminated river water samples 

c. To investigate the relationship between ferrous ion, Fe2
+ and ferric ion, 

Fe3
+, pH and redox potential (Eh) 

1.3 Scope of study 

In this study, the concentrations and distribution of Fe (II) and Fe(IlI) in water samples 

collected from several AMD sources and AMD-contaminated rivers at Mamut Copper 

Mine and its vicinity will be determined. Other water quality parameters, in particular 

redox potential (Eh) and pH, will be also be recorded. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Occurrence ofIron in Nature 

Iron has been considered the sixth most abundant element in the universe judging 

from the fact that the core of the earth' s crust is mainly composed ofliquid iron while 

the mantle contains high proportion offerromagnesian (Clarkson et aI., 1991; O'Neill, 

1993). It is the most versatile of all elements and known to exhibit some unique 

properties (Clarkson et ai., 1991; Silver, 1993). Generally, iron can be found in many 

crustal rocks such as hematite (Fe20 3), magnetite, chalcopyrite (CuFeS2), arsenopyrite 

(AsFeS2), limonite, bornite and pyrite (FeS2) (Clarkson et ai. , 1991; O'Neill, 1993; 

Silver, 1993). 

Pure iron (Fe, atomic number 26, atomic mass = 55.8, density of 7.9 glcm3
) is 

a silvery-white, shiny and malleable metal that can rust rapidly in moist air. Having 

the electronic configuration of 4ci3cf in its elemental form, the unpaired electron 

often give rise to the magnetic properties of iron and therefore, are of great importance 

in understanding its redox chemistry (Silver, 1993). Depending upon the oxidation 

state and the nature of ligands, iron oxidation number can vary from 0 to 5 (Silver, 

1993). 
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In biological environment, it can change from 0 to +2 in ferromagnesiurn minerals and 

eventually to +3 (Clarkson et at., 1991). 

In the aquatic ecosystem, iron may exist as colloids, suspensions, dissolved as 

well as complex-iron forms in the presence of other mineral and organic matter 

(Holzbecher, 2001; Luther, 1995). The concentration of dissolved iron in water is 

generally low. However, the concentration of iron in AMD and immediately 

downstream AMD-impacted rivers often display an unusually high value (Bachman et 

at., 2001; McKnight et at., 2001). 

2.2 Chemistry of Iron 

2.2.1 Ferrous Ion 

Ferrous ion or commonly denoted as Fe(II), is one of the most common oxidation 

state of iron. In the absence of air and in non-oxidizing acids, the stable form of Fe(II) 

species usually exist as free ions. Capable to mobilize freely in aquatic medium, Fe(IJ) 

can form several complexes with large number of ligands with most ofthese are either 

octahedral or distorted octahedral (Silver, 1993). Pure aqueous solution of Fe(TI) 

without tbe presence of any cornplexing agents however, is in the form of visible pale 

turquoise hexaquo ferrous ion, [Fe(H20)6f+. This complex can easily convert to ferric 

form in the presence of molecular oxygen in acid solution (Manaban, 1999; Silver, 

1993). 
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Fe(II) is also very easily oxidized under alkaline conditions. In the presence of 

hydroxides, [Fe(H20)6]2+ will be neutralized through the exchanged of hydrogen ions 

based on the following equation. 

[Fe(H20)6]2+ + 20H- - [Fe(H20)4(OH)2] + 2H20 (2.1) 

Oxygen in the air oxidizes the Fe(U)hydroxide precipitate to Fe(Ill)hydroxide. Thus, 

most hydroxides of Fe(IT) will precipitate out from aqueous solutions (Silver, 1993). 

The oxidation mechanism of Fe(IJ) to Fe(Ill) basically involves Fe02 + ion. 

Kinetics studies on this reaction showed that the attack of Fe2+ on Fe02 + will form a 

binuclear species known as the transient intermediate according to the following 

equation (Silver, 1993). 

Fe02+ + Fe(H20 ) 2+ ~ Fe(OOH) 2+ + Fe(OH) 2+ (2.2) 

This reaction then proceeds to a rapid decomposition of hydroperoxo ion to form 

Fe(ITI) and H02-, which can be further oxidized to form more Fe (III) or decompose to 

generate oxygen molecules, 02 (Foole et ai., 1995; McKnight el ai. , 2001 ; Silver, 

1993). 

In biological environment, the oxidation of Fe(ll) to Fe(lJl) can be microbial 

catalyzed by the colony of phototrophic bacteria Thiobacillus ferooxidans that thrives 

ideally in a very low pH environment as such in an AMD (Evangelou, 1995; 

Manahan, 1999; Sengupta, 1993). Clearly, in an anaerobic condition, Fe(II) will be a 

hydrogen donor in promoting the bacteria activity. Thiobacillus forroxidans has 

known long for its role in accelerating the rate of oxidation Fe(IJ) to Fe(ill) (Manahan, 

1999). 
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2.2.2 Ferric Ion 

Another species of iron in nature is ferric ion or commonly denoted as Fe(Iln. With a 

stable valence state of +3, Fe (III) acquired 5 electrons in its d-orbital. As such, it 

easily forms salts with all common anions except with those that have more reducing 

abilities i.e. iodide. In a low pH solution, Fe(IlJ) can be crystallized into the pale

violet hydrated form. In its complex form of [Fe(H20)6]3+, Fe(III) here is surrounded 

by water ligands. As the pH of this solution is gradually raised to approximately above 

2-3, condensation occurs thereafter forming a yellow colored solution. 

(2.3) 

Fe(IlI) readily undergo hydrolysis to free acids according to the equation below. 

(2.4) 

This reaction then proceeds to form colloidal gels, which eventually precipitates at 

near neutral pH as visible reddish brown precipitate (Silver, 1993). This sequence can 

be described by following expression; 

pH- I pH- 3 3<pH<IO 

Fe3+ --+ Fe(OH)2+ --+ Fe2(OHh 4+ --+ Fe(OH)3 (2.5) 

This brown precipitate is thought to be responsible for the low solubility of Fe(IIl) at 

pH 7 (Silver, 1993). In aqueous system, it has a profound impact towards the 

geochemical cycle of other trace metals as it can co-precipitate with other particles 

(Holzbecher, 2001). 
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2.3 Chemistry of Acid Mine Drainage Formation 

AMD fonnation is a chemical process involving a complex series of inter-related 

weathering reactions cycle (Stumm & Morgan, 1996). Metal sulfides in general are 

relatively unstable under anaerobic environment. However, upon exposure to 

persistent oxidizing condition and the presence of water, these minerals will oxidize. 

The oxidation of pyrite has been extensively studied and has been reviewed by 

Evangelou (1995). The following equations show the general accepted sequence of 

pyrite reactions: 

2FeS2 + 702 + 2H20 ---+ 2Fe2
+ + 4S04 + 4W (2.6) 

(2.7) 

4Fe3+ + 12H20 ---+ 4Fe(OH)3 + 12W (2.8) 

FeS2 + 14Fe3+ + 8H20 ---+ 15Fe2
+ + 2S0/- + 16W (2.9) 

In the initial step, pyrite is oxidized by oxygen to produce sulfuric acid and 

ferrous ion (Equation 2.6 and Equation 2.7). The second step involves the conversion 

of ferrous ion to ferric ion. Under very acid condition (i.e. pH <3.5), the solid mineral 

of Fe(III) does not fonn and most Fe(III) will remain in solution (Equation 2.7). 

The third step involves hydrolysis of ferric ion in water to fonn solid ferric 

hydroxide and the additional acidity. Clearly, following the increase of acid 

production when pH drops, oxidation of pyrite by ferric ion (Equation 2.9) now 

becomes the primary mechanism for acid production. This cyclic propagation of acid 
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