DESIGN, OPTIMISATION AND FABRICATION OF A CLIMBING SIX ARTICULATED-WHEELED ROBOT USING THE ARTIFICIAL EVOLUTION AND 3D PRINTING

LIM SHUN HOE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN THE FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: DESIGN, OPTIMISATION AND FABRICATION OF A CLIMBING SIX ARTICULATED-WHEELED ROBOT USING THE ARTIFICITAL EVOLUTION AND 3D PRINTING

LIAZAH: SARJANA KERJURUTERAAN

Saya <u>LIM SHUN HOE</u>, Sesi Pengajian <u>2013-2015</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

]	SU	LTT
1		

(Mengandungi maklumat yang berdajah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(Tandatangan Penulis) Alamat Tetap: 90, Tiang Dua 75460 Melaka. Tarikh: 30 Januari 2016

Disahkan oleh, NURULAIN BINTI ISMAIL BRARIAN NUS INSTRUCT ALAYSIA SABAH

PERPUSTAKAAN

(Tandatangan Pustakawan)

(ASSOC. PROF. DR. JASON TEO TZE WI)

Penyelia Utama

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equation, summaries and references, which have been duly acknowledged.

29 November 2015

Lim Shun Hoe MK1221024T

CERTIFICATION

NAME : LIM SHUN HOE

MATRIC NO. : MK1221024T

- TITLE : DESIGN, OPTIMISATION AND FABRICATION OF A CLIMBING SIX ARTICULATED-WHEELED ROBOT USING THE ARTIFICIAL EVOLUTION AND 3D PRINTING
- DEGREE : MASTER OF ENGINEERING (COMPUTER ENGINEERING)
- DATE OF VIVA : 25 September 2015

CERTIFIED BY

1. SUPERVISOR Assoc. Prof. Dr. Jason Teo Tze Wi

Signature

2. CO-SUPERVISOR Assoc. Prof. Dr. Jamal Ahmad Dargham

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to Vice-Chancellor of Universiti Malaysia Sabah, Prof. Datuk. Dr. Mohd Harun Abdullah for his permission to carry out this research in Universiti Malaysia Sabah.

I would like to express my thanks to the Dean of Faculty of Engineering, Prof. Ir. Dr. Rosalam Hj. Sarbatly for providing support during my research work.

I would like to take this opportunity to thank my supervisor Assoc. Prof. Dr. Jason Teo Tze Wi for his constant encouragement and guidance. Without his presence, I would not be able to go this far.

I would like to acknowledge the help and guidance that I received from my co-supervisor, Assoc. Prof. Dr. Jamal Ahmad Dargham.

I would like to show my appreciation to the Ministry of Higher Education, Malaysian for supporting this Master's program through its MyBrain-MyMaster program.

Last but not least, I would like to thank to my parents and family members who had been providing great support during my research work and also to everyone who helped me from the beginning until the final phase of my thesis work.

Lim Shun Hoe November 2015

ABSTRACT

Over the last decade, various mobile robots have been developed and widely used in myriad sectors. However, the vast majority of mobile robots are manually designed where the designers must have the preliminary knowledge of the interaction between the robots and the environment. Additionally, the high complexity involved in the design of the kinematics and controllers of a mobile robot has always been the biggest challenge for researchers and practitioners alike. Thus, the task of designing a robot can be considered very demanding and extremely challenging. In this research, an artificial evolution approach utilizing Single-Objective Evolutionary Algorithm (SOEA) and Multi-Objective Evolutionary Algorithm (MOEA) respectively are investigated in the automatic design and optimization of the morphology of a Six Articulated-Wheeled Robot (SAWR) with climbing ability. Simulations are carried out in Webots, a high fidelity physical-based robot simulator. Simulations results show that the SOEA is able to produce optimized SAWR with climbing ability while the MOEA is able to produce a set of Pareto optimal solutions which provide users with a choice of solutions for trade-off between the objectives of morphology size and climbing performance. The Pareto optimal set of solutions are the smallest SAWR with the least climbing ability to the biggest SAWR with the best climbing ability. The research continues by transferring the evolved solutions from simulation to the real world using 3D printing. The body, legs and wheels of the evolved robots are printed by a 3D printer and assembled with sensors, servos and motors for real world testing. Results show that the fabricated real world SAWRs were able to perform the climbing motion with an average accuracy of 80.9% compared to the performance in simulation.

ABSTRAK

PEREKAAN, PENGOPTIMUMAN DAN PEMASANGAN ROBOT MENDAKI YANG TERATUR BERODA ENAM MENGGUNAKAN EVOLUSI DAN PENCETAKAN 3D

Lebih sedekad yang lalu, pelbagai robot bergerak telah dibangunkan dan digunakan secara meluas dalam pelbagai sektor. Walau bagaimanapun, sebahagian besar robot bergerak direka bentuk secara manual di mana pereka mesti mempunyai pengetahuan awal interaksi antara robot dengan persekitarannya. Selain itu, kompleksiti yang tinggi yang terlibat dalam reka bentuk kinematik dan pengawal robot bergerak sentiasa menjadi cabaran terbesar bagi para penyelidik dan pengamal sama. Oleh itu, kerja merekabentuk robot yang boleh dianggap sebagai amat mencabar. Dalam kajian ini, pendekatan pengkomputeran evolusi menagunakan "Single-Objektive Evolutionary Algorithm" (SOEA) dan "Multi-Objektive Evolutionary Algorithm" (MOEA) masing-masing disiasat dalam reka bentuk automatik dan pengoptimuman morfologi robot enam kaki beroda (SAWR) dengan keupayaan mendaki. Proses simulasi dijalankan dengan menggunakan Webots, iaitu simulator robot berasaskan bentuk fizikal fideliti tinggi. Keputusan menunjukkan bahawa SOEA mampu menghasilkan SAWR yang dioptimumkan dengan keupayaan mendaki manakala MOEA mampu menghasilkan satu set penyelesaian yang optimum Pareto yang memberi pengguna pilihan penyelesaian untuk keseimbangan antara objektif saiz morfologi dan prestasi memanjat. Set optimum Pareto penyelesaian adalah SAWR yang paling kecil dengan keupayaan mendaki yang terkurang kepada SAWR terbesar dengan keupayaan mendaki yang paling tinggi. Kajian ini diteruskan dengan memindahkan penyelesaian yang dievolusi daripada simulasi kepada dunia sebenar dengan menggunakan percetakan 3D. Badan, kaki dan roda robot dievolusi dicetak oleh pencetak 3D dan dipasang dengan alat pengesan, servos dan motor untuk ujian dunia sebenar. Keputusan menunjukkan bahawa SAWRs dunia sebenar yang difabrikasi dapat melaksanakan gerakan pendakian dalam persekitarannya dengan ketepatan skor keseluruhan 80.9% berbanding dengan prestasi dalam simulasi.

TABLE OF CONTENTS

TITLE		Page i
DECL	ARATION	ii
SUPE	RVISORS' CONFIRMATION	111
ACKN	OWLEDGEMENTS	iv
ABST	RACT	v
ABST	RAK	vi
TABL	E OF CONTENTS	vii
LIST	OF TABLES	×ii
LIST	OF FIGURES	xiv
LIGT		y iii
L121	OF ADDREVIATIONS	XVIII
CHAP	PTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Mobile Robots	1
1.3	Hybrid Mobile Robots	2
1.4	Artificial Evolution	3
1.5	Problem Statement	3
1.6	Objectives	4
1.7	Project Scope	4
1.8	Thesis Organization	6
1.9	Summary	7
CHA	PTER 2: LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Factors That Influence The Design of Robots	8
	2.2.1 Factor – Robot Size	8
	2.2.2 Factor – Robot Locomotion Mechanism	10
2.3	Hybrid Mobile Robot Locomotion Mechanism	11

	2.3.1	Leg wit	h Wheel at The End (Articulated-Wheel) Hybrid	12
		Locomo	otion Mechanism	
	2.3.2	Indepe	ndent Leg and Wheel Modules Hybrid Locomotion	13
		Mechar	nism	
	2.3.3	Reconf	igurable or Transformable Wheel Hybrid	14
		Locom	otion Mechanism	
2.4	Study	On Rece	ent Developed Hybrid Wheel-Leg Mobile Robots	15
	2.4.1	Leg wit	th Wheel at the End (Articulated-Wheel) Hybrid	15
		Locom	otion Mechanism	
		a.	Bounding Gait in a Hybrid Wheel-Leg Robot	15
		b.	Reconfiguration and Obstacle Negotiation Methods	17
			on Hybrid Leg-Wheeled Robot	
			i. Climbing an Upward-Step	18
			ii. Climbing a Downward-Step	18
		с.	In-situ Reconfigurable Hybrid Wheeled-Legged	19
			robot – WheeHy	
		d.	Morphological Changing All-Terrain-Rover – ATR	22
	2.4.2	Indep	endent Leg and Wheel Modules Hybrid Locomotion	24
		Mecha	anism	
		a.	A Bio-Inspired Hybrid Legged-Wheeled Mobile	24
			Robot	
		b.	A Two Legs and Two Independent Wheels Hybrid	26
			Robot, Wheeleg	
		с.	Step Climbing Hybrid Leg-Wheel Robot: Mantis	28
	2.4.3	Reco	nfigurable or Transformable Wheel Hybrid	29
		Locor	notion Mechanism	
		a.	A Leg-Wheel Hybrid Mobile Platform with	29
			Transformable Wheel Morphologies	
		b.	Armadillo-Inspired Wheel-Leg Retractable Robot	31
	2.4.4	Sum	mary of Reviewed Robots	33
	2.4.5	5 Critic	al Summary	36
2.5	Evol	utionary	Algorithms	37
	2.5.1	l Main	Classes of Evolutionary Algorithms	38

		a.	Genetic Algorithms (GA)	38
		b.	Evolution Strategies (ES)	38
		c.	Evolutionary Programming (EP)	39
		d.	Genetic Programming (GP)	39
	2.5.2	Evolut	tionary Robotics	40
	2.5.3	Case S	Study of Evolutionary Robotics	41
2.6	Summ	ary		42
CHAF	TER 3:	METH	IODOLOGY	43
3.1	Introd	uction		43
3.2	Projec	t Overa	all Approach and Methodology	43
3.3	Six Aı	ticulat	ed-Wheeled Robot (SAWR)	45
	3.3.1	Morp	hology Design of SAWR	45
	3.3.2	The C	Climbing Motion Controller of SAWR	46
		a.	Climbing Upward Step	46
		b.	Climbing Downward Step	48
3.4	The S	imulati	ion Software	49
3.5	Adopt	ed Evo	olutionary Algorithms	53
3.6	Trans	ferring	Virtual Solutions into Real World Robots	54
	3.6.1	3D P	rinting Technology	54
	3.6.2	3D P	Printers	55
		a.	3D Touch	55
		b.	Up Plus 2	56
	3.6.3	STL	File Generating Method	57
		a.	Blender	57
		b.	Python Scripting on Automatic Generation of 3D	58
			Model	
3.7	Sumi	mary		61
СН	APTER 4	I: MOI SIN	RPHOLOGY OPTIMIZATION OF SAWR USING IGLE-OBJECTIVE EVOLUTION ALGORITHM	62
4.1	Intro	ductio	n	62

4.1 Introduction4.2 Single-Objective Evolution Algorithm (SOEA)

62

	4.2.1	Flowc	hart of the SOEA	62
	4.2.2	Fitnes	ss Function	63
	4.2.3	Mutat	ion	65
		a.	Weight Equation for Body	66
		b.	Weight Equation for Leg	68
		C.	Weight Equation for Wheel	69
4.3	Experi	ment S	Setup	71
	4.3.1	Task	Environment	71
	4.3.2	Simu	lation Parameters Setup	72
	4.3.3	Evolv	ving Objects Parameter Setup	73
4.4	Prelim	ninary I	Experiments	73
4.5	Result	ts for S	SOEA Experiments (Single-Step)	77
	4.5.1	Dete	rmination for Threshold of Convergence	77
	4.5.2	Resu	lts	78
4.6	Resul	ts for S	SOEA Experiments (Multi-Steps)	85
4.7	Sumn	nary		92
CHAI	PTER 5	: MOR MUI	RPHOLOGY OPTIMIZATION OF SAWR USING	94
5.1	Intro	ductior	n	94
5.2	Mult	i-Objeo	ctive Evolutionary Algorithm (MOEA)	94
	5.2.1	Flow	vchart of the MOEA	94
	5.2.2	Fitn	ess Function	96
	5.2.3	Mut	ation	97
5.3	Expe	riment	: setup	98
5.4	Resu	ilts for	MOEA Experiments	98
5.5	Com	parisor	n of MOEA and SOEA	109
5.6	Sum	mary		110
CHA	PTER	6: FAB	BRICATION AND REAL WORLD TESTING	112
6.1	Intro	oductio	n	112
6.2	Har	dware	Selection	112
	6.2.	1 Ser	vos	113
	6.2.	2 DC	Geared Motors	115

	6.2.3	Senso	ors	116
	6.2.4	Mainl	poard	118
6.3	Interfa	acing C	Circuit	119
6.4	Contro	oller De	esign	121
6.5	Fabric	ation o	of the Evolved Solutions	125
6.6	Real V	Vorld 7	Testing	131
	6.6.1	Real	World Testing of SAWR Without Climbing Ability	133
	6.6.2	Real	World Testing of SAWR With Climbing Ability	133
		a.	SAWR-SO1	134
		b.	SAWR-SO2	135
		с.	SAWR-MO2	137
		d.	SAWR-MO3	137
		e.	SAWR-MO4	139
6.7	Sumn	nary		142
CHA	PTER 7	: CON	CLUSION AND FUTURE WORK	143
7.1	Intro	duction	า	143
7.2	Sum	mary o	of Main Findings	144
7.3	Futur	re Wor	k ⇒	145
REF	ERENC	ES		146
APP	ENDIX	A: Lis	t of Publications	153

LIST OF TABLES

		Page
Table 2.1:	Summary of the Structure and Features of the Reviewed	34
Table 3.1:	Specification of 3D Touch	56
Table 3.2:	Specification of Up Plus 2	57
Table 4.1:	Fitness Scores Calculation based on Fitness Function	65
Table 4.2:	Weight of Body with Corresponding Body Length	67
Table 4.3:	Leg Weight with Corresponding Leg Length	68
Table 4.4:	Wheel Weight with Corresponding Wheel Radius	70
Table 4.5:	Summary of Simulation Parameters Setup	72
Table 4.6:	Evolving Objects Parameter Setup	73
Table 4.7(a):	Information of the Morphology Design for Manually Designed SAWR in Smallest Size	74
Table 4.7(b):	Information of the Morphology Design for Manually Designed SAWR in Medium Size	75
Table 4.7(c):	Information of the Morphology Design for Manually Designed SAWR in Largest Size	76
Table 4.8:	Summary of All the Fittest Solutions Obtained from	77
Table 4.9:	Fitness Score of the Fittest Solution from Five Runs of	78
Table 4.10(a):	SOEA (Single-Step) Detailed Information of the Fittest Solution from SOEA	79
Table 4.10(b):	Run 1 (Single-Step) Detailed Information of the Fittest Solution from SOEA	80
	Run 2 (Single-Step)	
Table 4.10(c):	Detailed Information of the Fittest Solution from SOEA Run 3 (Single-Step)	81
Table 4.10(d):	Detailed Information of the Fittest Solution from SOEA Run 4 (Single-Step)	82
Table 4.10(e):	Detailed Information of the Fittest Solution from SOEA	83
Table 4.11:	Comparison of the Fittest Solution from SOEA Run 1 with the Medium and Largest Manually Designed	84
Table 4.12:	Fitness Score of the Fittest Solution for Five Runs of	85
Table 4.13(a):	Detailed Information of the Fittest Solution from SOEA	86
Table 4.13(b):	Detailed Information of the Fittest Solution from SOEA	87
Table 4.13(c):	Detailed Information of the Fittest Solution from SOEA	88
Table 4.13(d):	Detailed Information of the Fittest Solution from SOEA Run 4 (Multi-Steps)	89

Table 4.13(e):	Detailed Information of the Fittest Solution from SOEA Run 5 (Multi-Steps)	90
Table 5.1:	Summary of Simulation Setup	98
Table 5.2:	Summary of Evolving Objects Parameter Setup	98
Table 5.3(a):	Detailed Description of Selected Solutions (Run 1)	100
Table 5.3(b):	Detailed Description of Selected Solutions (Run 2)	101
Table 5.3(c):	Detailed Description of Selected Solutions (Run 3)	102
Table 5.3(d):	Detailed Description of Selected Solutions (Run 4)	104
Table 5.3(e):	Detailed Description of Selected Solutions (Run 5)	105
Table 5.4:	Comparison of the Solution d from MOEA with Fittest Solutions from SOEA	109
Table 6.1:	Comparison of Available Servos	113
Table 6.2:	Comparison in Torque Supplied with Maximum Length of Leg	114
Table 6.3:	Comparison of Available DC Geared Motors	115
Table 6.4:	Comparison in Torque Supplied with Maximum Radius of Wheel	116
Table 6.5:	Comparison of Available Infrared Sensors	117
Table 6.6:	Specification of Arduino Mega 2560	118
Table 6.7:	Reconfiguration Methods with Servos Angles	121
Table 6.8:	Selected Evolved Solutions to be Fabricated	129
Table 6.9:	Summary of the Accuracy for Fabricated Real-World SAWRs	141

LIST OF FIGURES

Page

Figure 1.1:	Research Overview Block Diagram	5
Figure 2.1:	Mobile Robots Locomotion Mechanism Categorization	11
Figure 2.2:	Categories of Hybrid Mobile Robot	12
Figure 2.3:	The PAW Robot with Bounding Gait	15
Figure 2.4:	Phases in Rear and Front Legs Bounding State	16
-	Machines	
Figure 2.5:	Reconfiguration Methods for Climbing the Upward Step	18
Figure 2.6:	Reconfiguration Methods of Climbing the Downward	19
-	Step	
Figure 2.7:	Front View and Side View of WheeHy	20
Figure 2.8:	Control Architecture of Robot WheeHy	21
Figure 2.9:	Basic Conceptual Design of ATR	22
Figure 2.10:	Capable Motion Capabilities of the ATR	23
Figure 2.11:	Variable Conditions of Simulation	23
Figure 2.12:	Model of Bio-Inspired Hybrid Leg-Wheel Robot	25
Figure 2.13:	Front View of the Leg Movement	25
Figure 2.14:	Top View of the Leg Movement	25
Figure 2.15:	The Hybrid Robot, Wheeleg	26
Figure 2.16:	Design of Mantis Hybrid Leg-Wheel Robot	28
Figure 2.17:	Climbing Motion of Mantis	29
Figure 2.18:	The Leg-Wheel Hybrid Robot in Legged and Wheeled	30
	Mode	
Figure 2.19:	Leg Mode Locomotion (a) Walking on Rough Terrain;	31
	(b) Climbing Across Obstacles; (c) Climbing Stair Ascent	
Figure 2.20:	Retractable Wheeled-Legged Module	32
Figure 2.21:	The Prototype of the Retractable Wheeled-Legged	33
	Hybrid Robot	
Figure 2.22:	Grasping Motion with Joints and Rolling	33
Figure 3.1:	Project Overall Approach and Methodology	44
Figure 3.2(a):	Front View of the SAWR	45
Figure 3.2(b):	Side View of the SAWR	45
Figure 3.3:	Reconfiguration Method of Climbing Upward Step	47
Figure 3.4:	Reconfiguration Methods for Climbing Downward Step	48
Figure 3.5(a):	Main Window of Webots Simulator	50
Figure 3.5(b):	Scene Tree Window of Webots Simulator	50
Figure 3.5(c):	Program Editor of Webots Simulator	51
Figure 3.5(d):	Log Window of Webots Simulator	51
Figure 3.5(e):	Example of Webots World File	52
Figure 3.6:	Overview of EP Process	53
Figure 3.7:	3D Touch Printer	55
Figure 3.8:	Up Plus 2 Printer	56
Figure 3.9(a):	Main window of Blender	57
Figure 3.9(b):	Text Editor of Blender	58
Figure 3.10(a):	Code Fragment for Robot Body Length Input and Cube	59
	Creation	

Figure 3.10(b): Figure 3.11(a):	Generated 3D Model for Robot Body (200.0mm) Code Fragment for Robot Leg Length Input and Cube Creation	59 59
Figure 3 11(b).	Generated 3D Model for Robot Leg (54.0mm)	60
Figure 3.12(a):	Code Fragment for Robot Wheel Radius Input and Cylinder Creation	60
Figure 3.12(b):	Generated 3D Model for Robot Wheel Rim (20.0mm)	61
Figure 4.1:	Flowchart of the SOEA	63
Figure 4.2:	Example of UP! Software in Providing Information of the Printing Materials	67
Figure 4.3:	Body Weight vs. Body Length	67
Figure 4.4:	Code Fragment for Body Weight Calculation with All Other Elements	68
Figure 4.5:	Leg Weight vs. Leg Length	69
Figure 4.6:	Code Fragment for Leg Weight Calculation with Motor	69
Figure 4.7:	Wheel Weight vs. Wheel Radius	70
Figure 4.8:	Code Fragment for Wheel Weight Calculation	71
Figure 4.9(a):	Single-Step Environment	71
Figure 4.9(b):	Multi-Steps Environment	12
Figure 4.10(a):	Manually Designed SAWR in Smallest Size	74
Figure 4.11(a):	Performance of the Smallest Manually Designed SAWR	74
Finance 4 40/h)	In Climping the 55.0m Step	74
Figure 4.10(D):	Manually Designed SAWK In Medium Size	74
Figure 4.11(D):	in Climbing the 55.0m Step	/5
Figure 4.10(c):	Manually Designed SAWR in Largest Size	75
Figure 4.11(c):	Performance of the Largest Manually Designed SAWR in Climbing the 55.0m Step	76
Figure 4.12	Fitness Score of the Fittest Solution vs. Generation of SOFA with 1000 Generations	77
Figure 4.13(a):	The Fittest Solution from SOEA Run 1 (Single-Step)	79
Figure 4.14(a):	Fitness Score of the Fittest Solution vs. Generation of	79
	SOEA Run 1 (Sinale-Step)	
Figure 4.13(b):	The Fittest Solution from SOEA Run 2 (Single-Step)	80
Figure 4.14(b):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 2 (Single-Step)	80
Figure 4.13(c):	The Fittest Solution from SOEA Run 3 (Single-Step)	81
Figure 4.14(c):	Fitness Score of the Fittest Solution vs. Generation of	81
	SOEA Run 3 (Single-Step)	
Figure 4.13(d):	The Fittest Solution from Run SOEA 4 (Single-Step)	82
Figure 4.14(d):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 4 (Single-Step)	82
Figure 4.13(e):	The Fittest Solution from Run SOEA 5 (Single-Step)	83
Figure 4.14(e):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 5 (Single-Step)	83
Figure 4.15:	Performance of Fittest Solution from Run 1 in Performing Climbing Motion in Webots	84
Figure 4.16(a):	The Fittest Solution from SOEA Run 1. (Multi-Steps)	86
Figure 4.17(a):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 1 (Multi-Steps)	86

Figure 4.16(b):	The Fittest Solution from SOEA Run 2 (Multi-Steps)	87
Figure 4.17(b):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 2 (Multi-Steps)	87
Fiaure 4.16(c):	The Fittest Solution from SOEA Run 3 (Multi-Steps)	88
Figure 4.17(c):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 3 (Multi-Steps)	88
Figure 4.16(d):	The Fittest Solution from SOEA Run 4 (Multi-Steps)	89
Figure 4.17(d):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 4 (Multi-Steps)	89
Figure 4.16(e):	The Fittest Solution from SOEA Run 5 (Multi-Steps)	90
Figure 4.17(e):	Fitness Score of the Fittest Solution vs. Generation of SOEA Run 5 (Multi-Steps)	90
Figure 4.18:	Performance of Fittest Solution from Run 5 in	91
	Performing Climbing Motion in Multi-Step Environment	
	in Webots	
Figure 5.1:	Flowchart of the MOEA	95
Figure 5.2(a):	Pareto-set Optimal Solutions for Run 1	99
Figure 5.3(a):	Selected Solutions from Run 1	99
Figure 5.2(b):	Pareto-set Optimal Solutions for Run 2	100
Figure 5.3(b):	Selected Solutions from Run 2	101
Figure 5.2(c):	Pareto-set Optimal Solutions for Run 3	101
Figure 5.3(c):	Selected Solutions from Run 3	102
Figure 5.2(d):	Pareto-set Optimal Solutions for Run 4	103
Figure 5.3(d):	Selected Solutions from Run 4	103
Figure 5.2(e):	Pareto-set Optimal Solutions for Run 5	104
Figure 5.3(e):	Selected Solutions from Run 5	105
Figure 5.4(a):	Performance of Solution a from Region 1	106
Figure 5.4(b):	Performance of Solution b from Region 2	106
Figure 5.4(c):	Performance of Solution c from Region 3	107
Figure 5.4(d):	Performance of Solution d from Region 4	108
Figure 6.1(a):	Front View of the Morphology Design With the	112
	Placement of Main Components	
Figure 6.1(b):	Side View of the Morphology Design With the	113
	Placement of Main Components	
Figure 6.2:	HD-1051MG Servo	115
Figure 6.3:	HD-3001HB DC Geared Motor	116
Figure 6.4:	Sensor GP2D120XJ00F (Sensor1)	117
Figure 6.5:	Sensor IR01A (Sensor2)	118
Figure 6.6:	Arduino Mega 2560	119
Figure 6.7:	The Designed Interfacing Circuit	119
Figure 6.8:	Interfacing Circuit Built on Strip Board	120
Figure 6.9:	Flowchart of the Universal Controller	123
Figure 6.10:	Flowchart of Climbing Upward Reconfiguration Methods	123
Figure 6.11:	Flowchart of Climbing Downward Reconfiguration Methods	124
Figure 6.12(a):	Example of Generated 3D Model for Body in 215.0mm Length	125
Figure 6.12(b)	Example of Generated 3D Model for Leg in 54.0mm Length	125

Figure 6.13:User Interface of the 3D Printer Software with a Leg Model LoadedFigure 6.14:Process of 3D PrintingFigure 6.15:Printed SAWR Body PartsFigure 6.16:SAWR Body with Servos AttachedFigure 6.17:Printed SAWR Leg and Leg with Mounted Servo Socket	126 127 127 127 128
Figure 6.14:Process of 3D PrintingFigure 6.15:Printed SAWR Body PartsFigure 6.16:SAWR Body with Servos AttachedFigure 6.17:Printed SAWR Leg and Leg with Mounted Servo Socket	127 127 127 128
Figure 6.15:Printed SAWR Body PartsFigure 6.16:SAWR Body with Servos AttachedFigure 6.17:Printed SAWR Leg and Leg with Mounted Servo Socket	127 127 128
Figure 6.16: SAWR Body with Servos Attached Figure 6.17: Printed SAWR Leg and Leg with Mounted Servo Socket	127 128
Figure 6.17: Printed SAWR Leg and Leg with Mounted Servo Socket	128
the start fritten and the mag strain frances waite addited	
Figure 6.18: Printed SAWR Wheel and Wheel with Rubber Attached	128
Figure 6.19(a): Fabricated Real World SAWR0 Without Mainboard	129
Figure 6.19(b): Fabricated Real World SAWR1 Without Mainboard	129
Figure 6.19(c): Fabricated Real World SAWR2 Without Mainboard	130
Figure 6.19(d): Fabricated Real World SAWR3 Without Mainboard	130
Figure 6.19(e): Fabricated Real World SAWR4 Without Mainboard	138
Figure 6.19(f): Fabricated Real World SAWR5 Without Mainboard	131
Figure 6.20: Fabricated of the Selected Pareto Optimal Solutions from MOEA Run 1	131
Figure 6.21(a): Environment Setup for Step of 55.0mm Height	132
Figure 6.21(b): Environment Setup for Step of 50.0mm Height	132
Figure 6.21(c): Environment Setup for Stair-like Steps of 55.0mm Height	132
Figure 6.21(d): Environment Setup for Step of 80.0mm Height	132
Figure 6.22: Performance of SAWR-MO1 in Performing Climbing Motion (50.0mm step)	133
Figure 6.23: Performance of SAWR-SO1 in Performing Climbing Motion (55.0mm step)	134
Figure 6 24(a): Performance of SAWR-SO2 in Performing Climbing	135
Motion (50.0mm step)	100
Figure 6.24(b): Performance of SAWR-SO2 in Performing Climbing Motion (55.0mm stair-like steps)	136
Figure 6.24(c): Performance of SAWR-SO2 in Performing Climbing Motion (80 0mm step)	136
Figure 6.25: Performance of SAWR-MO2 in Performing Climbing	137
Motion (50.0mm step)	107
Figure 6.26(a): Performance of SAWR-MO3 in Performing Climbing	138
Motion (55.0mm step)	100
Figure 6.26(b): Performance of SAWR-MO3 in Performing Climbing	139
Motion (50.0mm stair-like steps)	
Figure 6.27(a): Performance of SAWR-MO4 in Performing Climbing	140
Figure 6.27(b): Performance of SAWR-MO4 in Performing Climbing	140
Motion (55.0mm stair-like stens)	T-10
Figure 6.27(c): Performance of SAWR-MO4 in Performing Climbing Motion (80.0mm step)	141

LIST OF ABBREVIATIONS

AM	Addictive Manufacturing
API	Application Programming Interface
ATR	All-Terrain-Rover
CAD	Computer-Aided Design
DOF	Degree-of-Freedom
EA	Evolutionary Algorithm
EP	Evolution Programming
ES	Evolution Strategies
FSM	Finite State Machine
GA	Genetic Algorithm
GP	Genetic Programming
MOEA	Multi-Objective Evolutionary Algorithm
PAW	Platform for Ambulating Wheels
PWM	Pulse Width Modulation
SAR	Synthetic Aperture Radar
SAWR	Six Articulated-Wheeled Robot
SOEA	Single-Objective Evolutionary Algorithm
VLSI	Very Large Scale Integration

CHAPTER 1

INTRODUCTION

1.1 Introduction

Mobile robotics has become an extremely popular research topic since the first implementation of mobile robots in World War II. By definition, a mobile robot is a machine with the capability to move in a given environment. In other words, mobile robots are able to move around in a specified environment and are not just fixed to one physical location. Mobile robotics is a field of great interest in robotics as it has a close interaction with the environment. Mobile robotics can be utilized in a wide range of applications. For example, in the service industry, military deployments, manufacturing, cleaning, entertainment and remote exploration, especially in search and rescue operations where human lives can be endangered.

1.2 Mobile Robots

Mobile robots have been showing a great success in the real-world implementation. For the first time, robots were assisting in an actual urban search and rescue mission of the World Trade Center tragedy on 11 September 2001. The team assisted by search and rescue robots had succeeded to discover more than ten victims, which are more than two percent of total victims discovered (Angela, 2002). The successful involvement of mobile robots in real life rescue missions has garnered much attention from researchers.

For ground mobile robots' locomotion, wheels and legs are the two common adopted methodologies. From a biological perspective, land animals with their sturdy legs are able to move over uneven terrains smoothly and rapidly after a long evolutionary process. On the other hand, during pre-historic times, humans invented wheels that were specialized in rolling to assist in ground locomotion. The excellent performance of wheels in both power efficiency and traveling speed can scarcely be achieved by legged mechanism. A hybrid platform with the combination of leg and wheel has excellent maneuverability on flat ground and uneven terrain.

Therefore, a hybrid platform is highly recommended for general indoor and outdoor environment operations as it is the trend for "future" mobile platforms (Shen, Li, Cheng, Lu, Wang, and Lin, 2009). The characteristics of each locomotion methodology are explained in detailed in Chapter Two.

1.3 Hybrid Mobile Robots

A hybrid mobile robot is a platform that combines both the legged and wheeled locomotion mechanisms. In recent years, hybrid mobile robots have been designed for various functionality and purposes. For example, there are hybrid mobile robots that were designed for stairs climbing purposes, performing jumping behavior, insitu reconfiguring robots posture and adapting to uneven terrain, among others. In general, hybrid mobile robots can carry out their mission better in rough terrains compared to the traditional wheeled or legged mobile robots. Hybrid mobile robots utilize the advantages of both wheeled and legged mechanisms while compensating the downside of each other.

There are many successful examples of hybrid mobile robots, which are built and designed for a wide range of operations. A group of researchers from a few universities in Japan had developed a hybrid wheeled-legged platform through a retracting mechanism inspired by the armadillo (Tadakuma, Tadakuma, Maruyama, Rohmer, Nagatani, Yoshina, Ming, Makoto, Higashimori and Kaneko, 2009). The idea of a retractable wheeled-legged module is that the speciallydesigned wheels can be transformed into a legs-like mechanism. Smith, Sharf and Trentini (2006a) from the McGill University proposed PAW, a four legs robot with wheels equipped at the end of each leg. PAW is the first to combine wheeled mode locomotion with dynamically stable legged locomotion.

University Lübeck in Germany developed WheeHy, which is capable of doing in-situ reconfiguration of its posture (Bojan, Martin, Michael, and Erik, 2010). One of the key features of WheeHy is that the robot can perform adaptation of its posture during its traversal over uneven terrain. National Taiwan University proposed a Quattroped platform with hybrid legged-wheeled locomotion (Shen, Li, Cheng, Lu, Wang, and Lin, 2009). The proposed system utilizes a transformation method where the morphology of its wheels can be directly transformed into legs.

UNIVERSITI MALAYSIA SABAH

Sojourner and Rocky 7 Rover by the NASA (Volpe, Balaram, Ohm, and Ivlev, 1997) and Shrimp by the Swiss Federal Institute of Technology Lausanne (Siegwart, Lamon, Estier, Lauria, and Piguet, 2002) are some other examples of hybrid mobile robots.

1.4 Artificial Evolution

The use of artificial evolution for the automatic generation and synthesis of controllers and/or morphologies for robots is one of the more recent methods in developing robots (Wang, Tan and Chew, 2006). By implementing evolutionary algorithms in designing a robot, an optimized controller and/or morphologies can be obtained where at times, these evolved solutions might be beyond the designers' design capability.

Successful examples of designing robots with artificial evolutionary approaches include walking robots designed with evolutionary computation in optimizing the morphology and controller (Rommerman, Kuhn, and Kirchner, 2009) and swarm robotics with their controllers designed using evolutionary algorithms with artificial neural networks (Kadota, Yasuda, Matsumura, and Ohkura, 2012).

1.5 Problem Statement

As been discussed earlier, there are numerous type of hybrid mobile robots that have been proposed and developed. However, as far as we aware, hybrid mobile robots are manually designed where the designers must have the preliminary knowledge of the interaction between the robots and the environment. Besides that, the extremely complexity in the kinematic and controller designing of a hybrid mobile robot has always been the biggest challenge for the researchers. Planning is an important aspect of the effort to design robots that perform their task with some degree of flexibility and responsiveness to the environment (Akerka, 2005). According to Akerka (2005), planning is a difficult problem for a number of reasons, not the least of which is the size of the space of possible sequences of moves. Even a simple robot, which can only move forward, backward, right or left has so many different ways that the robot can possibly move around in an environment. On the other hand, manually designed morphology on trial-and-error basis is not guaranteed to be optimal from the large design space (Endo, Yamasaki, Maeno,

UNIVERSITI MALAYSIA SABAH

3

and Kitano, 2003). Thus, the task of designing a robot can be considered demanding (Lee, 1998), especially in designing a hybrid mobile robot. Here, it raises the research question on the possibility of obtaining an optimized morphology of a climbing SAWR using an artificial evolution approach.

On the other hand, one of the biggest challenges in evolutionary robotics is to crawl out from simulation to the real-world implementation. Researches on evolutionary robotics usually stop at the simulation level where the results are not tested in the real-world environments. This might be due to the high cost in fabricating the robots as the cost of manufacturing a robot must be absorbed in mass production (Lipson and Pollack, 2000). With the invention of 3D printers, it provides a solution for rapid prototyping at a relatively low cost with almost immediate physical availability as soon as it is 3D printed. Therefore, evolved solutions in this research are to be fabricated with the aid of 3D printer and the performance of the fabricated real-world SAWRs is to be investigated.

1.6 Objectives

The objectives of this research are to obtain the fittest climbing hybrid mobile robots with evolutionary algorithms where the evolved solutions are transferred into real-world robots. The objectives are summarized as below:

- i. To propose an artificial evolution method in designing and optimizing the morphology of a six articulated-wheeled robot (SAWR) with climbing ability.
- ii. To integrate single-objective and multi-objective optimization into the evolutionary algorithm for evolving SAWRs.
- iii. To transfer the evolved robots from simulation to real world with 3D printing fabrication.

1.7 Project Scope

The scopes of the research are listed below:

i. The controller of the SAWR is manually designed and not involved in the evolution. The objective of this research is to obtain an optimized morphology of a SAWR with climbing ability, therefore the controller is designed to be as simple as possible for each evolved individual to perform climbing motion. Thus, SAWR with the designed controller is expected to be

UNIVERSITI MALAYSIA SABAH

able to move forward only and perform a series of reconfiguration method to perform climbing motion when approaching obstacles.

- ii. The morphology design of the SAWR consists of three main parts which are the robot main body, legs and wheels. Thus, in order to obtain an optimized morphology, the parameter of these three main parts have to be minimized which are the body length, leg length and wheel radius.
- iii. Flat terrain with flat step/steps as the obstacles is designed as the task environment for the SAWR. In this research, two environments have been selected, which are single-step environment and multi-steps environment. In single-step environment, there is only a single step of 55mm in height which is to be stridden by each individual SAWR in reaching the goal. While for multi-steps environment, there are three steps in the task environment. First, a single step of 50mm in height, the second is stairs-like step of 55mm in height and the last is a single step of 80mm in height.
- iv. Evolved solutions from simulations are transferred into real-world SAWRs with 3D printing with the material of Acrylonitrile Butadiene Styrene (ABS) plastic which has the limitation of only being able to print out geometries without any overhangs.

Figure 1.1: Research Overview Block Diagram.

Figure 1.1 shows the research overview block diagram. The experiment of this research was started with the simulation using the single-objective evolutionary algorithm. This was followed by the simulation with the multi-objective evolutionary

REFERENCES

- 3dprinting. 2015, January 13. *What is 3D printing?* Retrieved from http://3dprinting.com: http://3dprinting.com/what-is-3d-printing
- Akerka, R. 2005. Introduction to Artificial Intelligence. PHI Learning Pvt. Ltd.
- Angela, D. 2002. Urban Search and Rescue Robots: From Tragedy to Technology. *IEEE Intelligent Systems*, **7**(2):81-83.
- Arduino. 2015, February 4. *Arduino Mega 2560*. Retrieved from Arduino: http://www.arduino.cc
- Arkin, R. C. 1998. Behavior-Based Robotics. MIT Press.
- Beielstein, T., Ewald, C., & Markon, S. 2003. Optimal Elevator Group Control by Evolution Strategies. *Proceedings of the Genetic and Evolutionary Computation Conference*, 1963-1974.

Bits From Bytes. 2011. 3D Touch.

- Bojan, J., Martin, H., Michael, K., & Erik, M. 2010. Design of a Hybrid Wheeled-Legged Robot-Wheehy. *Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK)*, 1-6.
- Bruzzone, L., & Fanghella, P. 2014. Mantis Hybrid Leg-Wheel Robot: Stability Analysis and Motion Law Synthesis for Step Climbing. *10th International Conference on Mechatronic and Embedded Systems and Applications*, 10-12.
- Catania, V., Malgeri, M., & Russo, M. 1997. Applying Fuzzy Logic to Codesign Partitioning. *IEEE Micro*, **17**(3):62-70.
- Chandrasekharam, R., Subhramanian, S., & Chaudhury, S. 1993. Genetic Algorithm for Node Partitioning Problem and Application in VLSI Design. *IEEE Proceedings Series E: Computers and Digital Techniques*, **140**(5):255-260.
- Chin, K. O., & Teo, J. 2010. Evolution and Analysis of Self-Synthesized Minimalist Neural Controllers for Collective Robotics Using Pareto Multi-Objective Optimization. *IEEE Congress on Evolutionary Computation*, 1-7.

- Cytron. 2015, March 2. *RC Servo Motor (Metal Gear)*. Retrieved from Cytron Technologies: http://cytron.com.my
- Deb, K. 2001. *Multi-Objective Optimization Using Evolutionary Algorithms*. New York: Wiley.
- Endo, G., & Hirose, S. 1999. Study on Roller-Walker. *IEEE International Conference* on Robotics and Automation (system integration and basic experiments), 3: 2032-2037.
- Endo, K., Yamasaki, F., Maeno, T., & Kitano, H. 2003. Co-evolution of Morphology and Controller for Biped Humanoid Robot. In Kaminka, A. Gal, Lima, U. Pedro, & R. Rojas, *RoboCup 2002: Robot Soccer World Cup VI.* Springer.
- Enrique, A., & Carlos, C. 2004. Evolutionary Algorithms, *Handbook of Bioinspired Algorithms and Applications*, 3-19.
- Floreano, D., Zufferey, J.-C., & Nicoud, J.-D. 2005. From Wheels to Wings with Evolutionary Spiking Circuits. *Artificial Life*, **11**(1-2):121-138.
- Fogel, D. B. 1998. Evolutionary Computation: The Fossil Record. Wiley IEEE-Press.
- Fogel, L. J., Angeline, P. J., & Fogel, D. B. 1995. An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines. *In Proceedings of the 4th Annual Conference on Evolutionary Programming*, 355-365.
- Fogel, L. J., Owens, A. J., & Walsh, M. J. 1966. *Artificial Intelligence Through Simulated Evolution.* John Wiley & Sons.
- Gianni, C., & Erika, O. 2009. Design and Simulation of a New Hybrid Mobile Robot for Overpassing Obstacle. *Proceedings of EUCOMES*, 101-108.
- Grand, C., Benamar, F., Plumet, F., & Bidaud, P. 2004. Stability and Traction Optimization of a Reconfigurable Wheel-Legged Robot. *The International Journal of Robotics Research*, **23**(10-11):1041-1058.
- Guo, Y., Zhang, S., Ritter, A., & Man, H. 2014. A Case Study on a Capsule Robot in the Gastrointestinal Tract to Teach Robot Programming and Navigation. *IEEE Transaction on Education*, **57**(2):112-121.

- Hansen, N., Arnold, D., & Auger, A. 2013. Evolution Strategies. In K. Janusz, & P. Witold, *Handbook of Computational Intelligence*. Springer.
- Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R., Ivlev, R., Tharp, G., Peters,
 S., Ohm, T., Petras, R., Laubach, S. 1997. The Rocky 7 Rover: A Mars
 Sciencecraft Prototype. *Proceedings of the IEEE International Conference on Robotics and Automation*, 3:2458-2464.
- Horward, D., Roberts, S., & Brankin, R. 1999. Target detection in SAR imagery by genetic programming. *Advances in Engineering Software*, **30**(5):303-311.
- Iba, H. 2008. Frontiers in Evolutionary Robotics. I-Tech Education and Publishing.
- Jakobi, N., Husbands, P., & Harvey, I. 1995. Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics. Advances in artificial life, Springer, 704-720.
- Kadota, T., Yasuda, T., Matsumara, Y., & Ohkura, K. 2012. An Incremental Approach to an Evolutionary Robotic Swarm. *IEEE/SICE International Symposium on System Integration (SII)*, 458-463.
- Karr, C. 1991. Genetic Algorithms for Fuzzy Controllers. AI Experts, 6(2):26-33.
- Kim, I., Lee, J., Jeong, W., Kim, J., & Yang, H. 2013. Design of Morphological Changing All-Terrain-Rover for Enhancing Mobility. 16th International Conference on Advanced Robotics, 1-6.
- Koos, S., Mouret, B., & Doncieux, S. 2013. The Transferability Approach: Crossing the Realigy Gap in Evolutionary Robotics. *IEEE Transactions on Evolutionary Computation*, **17**(1):122-145.
- Koza, J. 1990. Evolution and Co-Evolution of Computer Programs to Control Independently-Acting Agents. *Proceedings of the International Conference on Simulation of Adaptive Behavior on From Animals To Animats*, 366-375.
- Lacagnina, M., Muscato, G., & Sinatra, R. 2003. Kinematics, Dynamics and Control of a Hybrid Robot Wheeleg. *Robotics and Autonomous Systems*, **45**(3):161-180.

- Lee, M. A., & Takagi, H. 1993. Integrating Design Stages of Fuzzy Systems Using Genetic Algorithms. *Proceedings of the IEEE International Conference on Fuzzy Systems*, 612-617.
- Lee, W. P. 1998. An Evolutionary System for Automatic Robot Design. *IEEE Internatonal Conference on Systems, Man, and Cybernatics*, **4**:3477-3482.
- Lipson, H., & Pollack, J. B. 2000. Automatic Design and Manufacture of Robotic Lifeforms. *Nature*, **406**(6799):974-978.
- Lu, J. L., & Bu, C. G. 2009. Study on the Mobile Robot Reconfiguration Control Methods. *IEEE International Conference on Automation and Logistics*, 2045-2049.
- Marocco, D., Floreano, D. 2002. Active Vision and Feature Selection in Evolutionary Behavioral Systems. *Proceedings of the Seventh International Conference on Simulation of Adaptive Behavioral*, **7**:247-255.
- Mazzapioda, M., Cangelosi, A., & Nolfi, S. 2009. Evolving Morphology and Controller: A Distributed Approach. *IEEE Congress on Evolutionary Computation*, 2217-2224.
- Mohammad, S. H., Jeffril, M. A., & Shariff, N. 2013. Mobile Robot Obstacle Avoidance by Using Fuzzy Logic Technique. *IEEE International Conference on System Engineering and Technology*, 331-335.
- Nakajima, S., Nakano, E., & Takahashi, T. 2004. Motion Control Technique For Practical Use of a Leg-Wheel Robot on Unknown Outdoor Rough. *IEEE/RSJ International Conference on Intelligent Robots and Systems*, **2**:1353-1358.
- Nelson, A. L., Barlow, G. J., Doitsidis, L. 2009. Fitness Functions in Evolutionary Robotics: A Survey and Analysis. *Robotics and Autonomous Systems*, **57**(4): 345-370.
- Nolfi, S., & Floreano, D. 2000. *Evolutionary Robotics: The biology, intelligence, and technology of self-organizing machines,* MIT Press.
- Okan, A., & Levent, A. H. 2014. A Visual Compass for Robot Soccer. *Signal Processing* and Communication Applications Conference, 2003-2006.

- Ong, C. H., Shamsudin, H. M., & Amin. 2002. A Biologically Inspired Hybrid Three Legged Mobile Robot. *Student Conference on Research and Development*, 181-183.
- Parker, G. B., Georgescu, R. A. 2005. Using cyclic genetic algorithms to evolve multiloop control programs. *Proceedings of the 2005 IEEE International Conference on Mechatronics and Automation, ICMA 2005* **1**:131-118.
- PP3DP. 2015, January 13. UP Plus 2. Retrieved from PP3DP: http://www.pp3dp.com
- Rechenberg, I. 1965. *Cybernetic Solution Path of an Experiment Problem*. Royal Aircraft Establishment Library Translation, No.1122.
- Rommerman, M., Kuhn, D., & Kirchner, F. 2009. Robot Design for Space Missions Using Evolutionary Computation. *IEEE Congress on Evolutionary Computation (CEC)*, 2098-2015.
- Ryan, C., Collins, J., & Neil, M. 1998. Genetic Programming. Springer.
- Schenk, O., & Hillmann, M. 2004. Optimal Design of Metal Forming Die Surfaces with Evolution Strategies. *Journal Computers and Structures*, **82**(20):1695-1705.
- Shen, S. Y., Li, C. H., Cheng, C. C., Lu, J. C., Wang, S. F., & Lin, P. C. 2009. Design of a Leg-Wheel Hybrid Mobile Platform. *IEEE International Conference on Intelligent Robots and Systems*, 4682-4687.
- Siegwart, R., Lamon, P., Estier, T., Lauria, M., & Piguet, R. 2002. Innovative Design for Wheeled Locomotion in Rough Terrain. *Robotics and Autonomous Systems*, **40**(2):151-162.
- Smith, J. A., Sharf, I., & Terntini, M. 2006. PAW: A Hybrid Wheeled-Leg Robot. *Proceedings of the IEEE International Conference on Robotics and Automation*, 4043-4048.
- Smith, J. A., Sharf, I., & Trentini, M. 2006. Bounding Gait in a Hybrid Wheeled-Leg Robot. IEEE / RSJ International Conference on Intelligent Robots and Systems, 5750-5755.
- Suwannasit, K., & Laksanachawen, S. 2004. A Bio-Inspired Hybrid Leg-Wheel Robot. TENCON 2004 IEEE Region 10 Conference, **500**:495-497.

- Tadakuma, K., Tadakuma, R., Maruyama, A., Rohmer, E., Nagatani, K., Yoshida, K., Ming, A., Makoto, S., Higashimori, M., Kaneko, M. 2009. Armadillo-Inspired Wheel-Leg Retractable Module. *IEEE International Conference on Robotics* and Biomimetics, 610-615.
- Tan, T. G., Teo, J., & Chin, K. O. 2013. Single-Versus Multiobjective Optimization for Evolution of Neural Controllers in Ms. Pac-Man. *Internatinal Journal of Computer Games Technology*.
- Taylor, T., & Massey, C. 2001. Recent Developments in the Evolution of Morhpologies and Controllers for Physically Simulated Creatures. *Artificial LIfe*, **7**(1):77-87.
- Thuerr, T., & Siegwart, R. 2010. Mobility Evaluation of Wheeled All-Terrain Robots. *Robotics and Autonomous System*, **58**(5):508-519.
- Trianni, V., Dorigo, M. 2006. Self-organisation and communication in groups of simulated and physical robots, *Biological Cybernetics*, **95**(3):213-231.
- Volpe, R., Balaram, J., Ohm, T., & Ivlev, R. 1997. Rocky 7: A Next Generation Mars Rover Prototype. Advaned Robotics, 11(4):341-358.
- Wang, L., Tan, K. C., & Chew, C. M. 2006. *Evolutionary Robotics: From Algorithms* to Implementations. World Scientific Publishing.
- Wang, W. C., Yang, S. X., Shi, W. R., & Meng, M. Q. 2004. A Co-Evolution Approach to Sensor Placement and Controller Design for Robot Obstacle Avoidance. *Proceeding of 2004 International Conference on Information Acquisition*, 107-112.
- Webots. 2015, January 11. *Webots User Guide*. Retrieved from Cyberbotics: http://www.cyberbotics.com/dvd/common/doc/webots/guide/section2.7.ht ml
- Whitley, D. 1994. A Genetic Algorithm Tutorial. *Statistics and Computing*, **4**(2):65-85.
- Wong, K. P., & Yuryevich, J. 1998. Optimal Power Flow Method Using Evolutionary Programming. *Lecture Notes in Artificial Intelligence*, 405-412.

Yuan, J., & Hirose, S. 2004. Research on Leg-Wheel Hybrid Stairclimbing Robot, Zero Carrier. *IEEE International Conference on Robotics and Biomimetics*, 654-659.

