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ABSTRACT 

Over the last decade, various mobile robots have been developed and widely used 
in myriad sectors. However, the vast majority of mobile robots are manually 
designed where the designers must have the preliminary knowledge of the 
Interaction between the robots and the environment. Additionally, the high 
complexity Involved in the design of the kinematics and controllers of a mobile 
robot has always been the biggest challenge for researchers and practitioners alike. 
Thus, the task of designing a robot can be considered very demanding and 
extremely challenging. In this research, an artificial evolution approach utilizing 
Single-Objective Evolutionary Algorithm (SOEA) and Multi-Objective Evolutionary 
Algorithm (MOEA) respectively are investigated in the automatic design and 
optimization of the morphology of a Six Articulated-Wheeled Robot (SAWR) with 
climbing ability. Simulations are carried out in Webots, a high fidelity physical-based 
robot simulator. Simulations results show that the SOEA is able to produce 
optimized SAWR with climbing ability while the MOEA is able to produce a set of 
Pareto optimal solutions which provide users with a choice of solutions for trade-off 
between the objectives of morphology size and climbing performance. The Pareto 
optimal set of solutions are the smallest SAWR with the least climbing ability to the 
biggest SAWR with the best climbing ability. The research continues by transferring 
the evolved solutions from simulation to the real world using 3D printing. The body, 
legs and wheels of the evolved robots are printed by a 3D printer and assembled 
with sensors, servos and motors for real world testing. Results show that the 
fabricated real world SAWRs were able to perform the climbing motion with an 
average accuracy of 80.9% compared to the performance in simulation. 
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ABSTRAK 

PEREKAAN, PENGOPTIMUMAN DAN PEMASANGAN ROBOT 
MENDAKI YANG TERATUR BERODA ENAM MENGGUNAKAN 

EVOLUSI DAN PENCETAKAN 3D 

Lebih sedekad yang /a/u, pe/bagai robot bergerak te/ah dibangunkan dan digunakan 
secara meluas dalam pelbagai sektor. Walau bagaimanapun, sebahagian besar 
robot bergerak direka bentuk secara manual di mana pereka mesti mempunyai 
pengetahuan awal interaksi antara robot dengan persekitarannya. Selain itu, 
kompleksiti yang tinggl yang terlibat dalam reka bentuk kinematik dan pengawal 
robot bergerak sentlasa menjadl cabaran terbesar bagl para penyelidik dan 
pengamal sama. Oleh itu, ketja merekabentuk robot yang boleh dianggap sebagai 
amat mencabar. Dalam kajian ini, pendekatan pengkomputeran evo/usi 
menggunakan ''Single-Objektive Evolutionary Algorithm H (SOEA) dan "Multi
Objektive Evolutionary Algorithm H (MOEA) masing-masing disiasat dalam reka 
bentuk automatik dan pengoptimuman morfologi robot enam kakl beroda (SAWR) 
dengan keupayaan mendaki. Proses simulasl dijalankan dengan menggunakan 
Webo~ laitu simulator robot berasaskan bentuk flzikal fldelitl tlnggl. Keputusan 
menunjukkan bahawa SOEA mampu menghasilkan SAWR yang dioptimumkan 
dengan keupayaan mendakl manakala MOEA mampu menghasilkan satu set 
penyelesaian yang optimum Pareto yang member! pengguna pilihan penyelesaian 
untuk keseimbangan antara objektif saiz morfologl dan prestasl memanjat. Set 
optimum Pareto penyelesaian adalah SAWR yang paling kecil dengan keupayaan 
mendakl yang terkurang kepada SAWR terbesar dengan keupayaan mendaki yang 
paling tinggi. Kajian ini diteruskan dengan memindahkan penyelesaian yang 
dievolusl darlpada simulasl kepada dunia sebenar dengan menggunakan 
percetakan 3D. Badan, kakl dan roda robot dievolusi dicetak oleh pencetak 3D dan 
dipasang dengan alat pengesan, servos dan motor untuk ujian dunia sebenar. 
Keputusan menunjukkan bahawa SAWRs dunia sebenar yang difabrikasi dapat 
melaksanakan gerakan pendakian dalam persekitarannya dengan ketepatan skor 
keseluruhan 80.9% berbanding dengan prestasi dalam simulasi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Mobile robotics has become an extremely popular research topic since the first 

implementation of mobile robots in World War II. By definition, a mobile robot Is a 

machine with the capability to move in a given environment. In other words, mobile 

robots are able to move around in a specified environment and are not just fixed to 

one physical location. Mobile robotics is a field of great interest in robotics as it has 

a close interaction with the environment. Mobile robotics can be utilized in a wide 

range of applications. For example, in the service industry, military deployments, 

manufacturing, cleaning, entertainment and remote exploration, especially In 

search and rescue operations where human lives can be endangered. 

1.2 Mobile Robots 

Mobile robots have been showing a great success in the real-world implementation. 

For the flrst time, robots were assisting in an actual urban search and rescue 

mission of the World Trade Center tragedy on 11 September 2001. The team 

aSSisted by search and rescue robots had succeeded to discover more than ten 

victims, which are more than two percent of total victims discovered (Angela, 2002). 

The successful Involvement of mobile robots In real life rescue missions has 

garnered much attention from researchers. 
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For ground mobile robots' locomotion, wheels and legs are the two common 

adopted methodologies. From a biological perspective, land animals with their 

sturdy legs are able to move over uneven terrains smoothly and rapidly after a long 

evolutionary process. On the other hand, during pre-historic times, humans 

Invented wheels that were specialized In rolling to assist in ground locomotion. The 

excellent performance of wheels In both power effiCiency and traveling speed can 

scarcely be achieved by legged mechanism. A hybrid platform with the combination 

of leg and wheel has excellent maneuverability on flat ground and uQeven terrain. 
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Therefore, a hybrid platform is highly recommended for general indoor and outdoor 

environment operations as it is the trend for "future" mobile platforms (Shen, L1, 

Cheng, lu, Wang, and Lin, 2009). The characteristics of each locomotion 

methodology are explained in detailed in Chapter Two. 

1.3 Hybrid Mobile Robots 

A hybrid mobile robot is a platform that combines both the legged and wheeled 

locomotion mechanisms. In recent years, hybrid mobile robots have been designed 

for various functionality and purposes. For example, there are hybrid mobile robots 

that were designed for stairs climbing purposes, performing jumping behavior, In

situ reconfiguring robots posture and adapting to uneven terrain, among others. In 

general, hybrid mobile robots can carry out their mission better in rough terrains 

compared to the traditional wheeled or legged mobile robots. Hybrid mobile robots 

utilize the advantages of both wheeled and legged mechanisms while compensating 

the downside of each other. 

There are many successful examples of hybrid mobile robots, which are 

built and designed for a wide range of operations. A group of researchers from a 

few universities in Japan had developed a hybrid wheeled-legged platform through 

a retracting mechanism inspired by the armadillo (Tadakuma, Tadakuma, 

Maruyama, Rohmer, Nagatani, Yoshlna, Ming, Makoto, Higashimori and Kaneko, 

2009). The idea of a retractable wheeled-legged module Is that the specially

designed wheels can be transformed Into a legs-like mechanism. Smith, Sharf and 

Trentini (2006a) from the McGill University proposed PAW, a four legs robot with 

wheels equipped at the end of each leg. PAW is the first to combine wheeled mode 

locomotion with dynamically stable legged locomotion. 

University Lubeck in Germany developed WheeHy, which is capable of doing 

In-situ reconfiguratlon of Its posture (Bajan, Martin, Michael, and Erik, 2010). One 

of the key features of WheeHy is that the robot can perform adaptation of its 

posture during its traversal over uneven terrain. National Taiwan University 

proposed a Quattroped platform with hybrid legged-wheeled locomotion (Shen, L1, 

Cheng, Lu, Wang, and Lin, 2009). The proposed system utilizes a transformation 

method where the morphology of its wheels can be directly transformed Int Ie i\ II 
2 .~ IVIS 
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Sojourner and Rocky 7 Rover by the NASA (Volpe, Balaram, Ohm, and Ivlev, 1997) 

and Shrimp by the Swiss Federal Institute of Technology Lausanne (Siegwart, 

Lamon, Estier, Lauria, and Piguet, 2002) are some other examples of hybrid mobile 

robots. 

1.4 Artificial Evolution 

The use of artificial evolution for the automatic generation and synthesis of 

controllers and/or morphologies for robots is one of the more recent methods in 

developing robots (Wang, Tan and Chew, 2006). By implementing evolutionary 

algorithms In designing a robot, an optimized controller and/or morphologies can 

be obtained where at times, these evolved solutions might be beyond the designers' 

design capability. 

Successful examples of designing robots with artificial evolutionary 

approaches Include walking robots designed with evolutionary computation In 

optimizing the morphology and controller (Rom merman, Kuhn, and Kirchner, 2009) 

and swarm robotics with their controllers designed using evolutionary algorithms 

with artificial neural networks (Kadota, Yasuda, Matsumura, and Ohkura, 2012). 

1.S Problem Statement 

As been discussed earlier, there are numerous type of hybrid mobile robots that 

have been proposed and developed. However, as far as we aware, hybrid mobile 

robots are manually designed where the designers must have the preliminary 

knowledge of the Interaction between the robots and the environment. Besides that, 

the extremely complexity in the kinematiC and controller designing of a hybrid 

mobile robot has always been the biggest challenge for the researchers. Planning is 

an important aspect of the effort to design robots that perform their task with some 

degree of flexibility and responsiveness to the environment (Akerka, 2005). 

According to Akerka (2005), planning is a difficult problem for a number of reasons, 

not the least of which Is the size of the space of possible sequences of moves. Even 

a simple robot, which can only move forward, backward, right or left has so many 

different ways that the robot can possibly move around In an environment. On the 

other hand, manually designed morphology on trial-and-error basis is not 

guaranteed to be optimal from the large design space (Endo, Yamasaki, Maeno 
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and Kitano, 2003). Thus, the task of designing a robot can be considered 

demanding (Lee, 1998), especially in designing a hybrid mobile robot. Here, it 

raises the research question on the possibility of obtaining an optimized 

morphology of a climbing SAWR using an artificial evolution approach. 

On the other hand, one of the biggest challenges In evolutionary robotics is 

to crawl out from simulation to the real-world Implementation. Researches on 

evolutionary robotics usually stop at the simulation level where the results are not 

tested in the real-wortd environments. This might be due to the high cost In 

fabricating the robots as the cost of manufacturing a robot must be absorbed in 

mass production (Upson and Pollack, 2000). With the invention of 3D printers, it 

provides a solution for rapid prototyplng at a relatively low cost with almost 

immediate physical availability as soon as it is 3D printed. Therefore, evolved 

solutions in this research are to be fabricated with the aid of 3D printer and the 

performance of the fabricated real-world SAWRs is to be investigated. 

1.6 Objectives 

The objectives of this research are to obtain the fittest climbing hybrid mobile 

robots with evolutionary algorithms where the evolved solutions are transferred 

into real-world robots. The objectives are summarized as below: 

i. To propose an artificial evolution method In designing and optimizing the 

morphology of a six articulated-wheeled robot (SAWR) with climbing ability. 

ii. To integrate single-objective and multi-objective optimization Into the 

evolutionary algorithm for evolving SAWRs. 

iii. To transfer the evolved robots from simulation to real world with 3D printing 

fabrication. 

1.7 Project Scope 

The scopes of the research are listed below: 

I. The controller of the SAWR is manually designed and not involved in the 

evolution. The objective of this research Is to obtain an optimized 

morphology of a SAWR with climbing ability, therefore the controller is 

designed to be as simple as possible for each evolved individual to perform 

climbing motion. Thus, SAWR WI~ the designed controller Is ~Divt S 
~ 
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able to move forward only and perform a series of reconfiguration method 

to perform climbing motion when approaching obstacles. 

ii. The morphology design of the SAWR consists of three main parts which are 

the robot main body, legs and wheels. Thus, in order to obtain an optimized 

morphology, the parameter of these three main parts have to be minimized 

which are the body length, leg length and wheel radius. 

iii. Flat terrain with flat step/steps as the obstacles Is designed as the task 

environment for the SAWR. In this research, two environments have been 

selected, which are single-step environment and mUlti-steps environment. 

In single-step environment, there is only a single step of 55mm in height 

which Is to be stridden by each individual SAWR in reaching the goal. While 

for mUlti-steps environment, there are three steps in the task environment. 

First, a single step of 50mm in height, the second is stairs-like step of 55mm 

in height and the last is a single step of 80mm In height. 

Iv. Evolved solutions from simulations are transferred Into real-world SAWRs 

with 3D printing with the material of Acrylonitrile Butadiene Styrene (ABS) 

plastiC which has the limitation of only being able to print out geometries 

without any overhangs. 

Simulation with Single-Objective 
Evolutionary Algorithm 

Simulation with Multi-Objective 
Evolutionary Algorithm 

Fabrication of Real-World 
SAWRs 

Comparison in Performance of 
Fabricated Real-World SAWRs 

Figure 1.1: Research Overview Block Diagram. 

Figure 1.1 shows the research overview block diagram. The experiment of 

this research was started with the simulation using the single-objective evolutionary 

algorithm. This was followed by the simulation with the multi-objective evolutionary 
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