

STUDIES ON PHYSICO-CHEMICAL CHARACTERISTICS OF IOTA-CARRAGEENAN EXTRACTED BY ULTRASONIC METHOD

D.M.REDDY PRASAD

UNIVERSITI MALAUSIA SABAH

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2006

BORANG PENGESAHAN STATUS TESIS

JUDUL

: STUDIES ON PHYSICO-CHEMICAL CHARACTERISTICS OF IOTA- CARRAGEENAN EXTRACTED BY ULTRASONIC METHOD

IJAZAH: DOKTOR FALSAFAHSESI PENGAJIAN: 2003-2006

Saya **D.M. REDDY PRASAD** mengaku membenarkan tesis DOKTOR FALSAFAH ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universii Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. TIDAK TERHAD

Disahkan oleh:

(Penulis: D.M. REDDY PRASAD)

(TANDATANGAN PUSTAKAWAN)

Tarikh: 30th June 2006

(Penyelia : PROF.MADYA DR. AWANG BONO)

DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

D.M.REDDY RRASAD

PS2003-008-014 (A) 30th JUNE 2006

ACKNOWLEDGMENT

Thank you GOD.

I would like to express my sincere and profound gratitude to the Vice Chancellor, Universiti Malaysia Sabah, and Dean, School of Engineering and Information Technology for giving an opportunity and also for providing scholarship for me during my entire research work.

I would like to express my unlimited appreciation to Prof. Madya. Dr. Awang Bono and Prof. Madya. Dr. Duduku Krishnaiah for their valuable supervision, guidance in the research and preparation of this thesis. They encouraged me to go in depth study in the areas of Chemical and Sono Chemical Engineering. Their consistent motivation and encouragement allowed me to perform better and unleashed my capabilities in many areas, especially in the field related to this thesis.

I would like to express my sincere gratitude Prof. Dr. Sazali Yaccob and Dr. Paulraj M Pandiyan for helping in neural network application in my research, Prof. Dr. Kamatam Krishnaiah, who assisted me in mass transfer modeling and special thanks to Associate Prof. Dr. A. Prabhakar, for his valuable suggestions in the text preparation.

I would like to express my thanks to the Lab Assistants, Miss. Noridah Abas, Miss. Noor Aemi Dawalih, Mr. Abdullah Tarikim, Mr. Panjiman Saidin who did the maintenance of equipment during my research work.

I would also like to extend my sincere thanks to my students, Mr. Srinath (Dalhousie University) Canada, Ms. Varalakshmi(Ohio University) Athens, Mr. Prabhu Kumar(University of Wisconsin)USA, Mr. Madhavan and Mr. Anandh Kumar(National University) Singapore, my colleague Mr.C. Karthikayan and others whom are not mentioned here for their support and cooperation through out this research work.

Finally, I am also grateful to my Grandmother Mrs. Yarraka, parents Sri. D. Mogilappa Chetty and Smt. Parvathi, my sisters Mrs. D.M. Reddy Prasuna and Mrs. D.M. Reddy Prameela for their love, continuous support and encouragement in completing this research work.

ABSTRAK

KAJIAN SIFAT PSIKO-KEMIKAL IOTA-KARRAGEENAN YANG DIEKSTRAK MELALUI KAEDAH ULTRASONIK

Karrageenan adalah gam semulajadi yang boleh larut dalam air dan boleh dijumpai dalam beberapa spesis rumpai laut. Ia merupakan sejenis bio-polimer tersulfat semulajadi yang terbentuk daripada unitunit galaktosa. Kebanyakan kepelbagaian rumpai laut yang terdapat di Laut China Selatan adalah Caulerpa, Ulva, Saraassum, Euchema, Gracilaria, Gelidiella, dan Kappaphycus. Pengekstrakan haba ikarrageenan daripada rumpai laut tidak memberi hasil yang tinggi, malah memakan masa. Pengekstrakan terbantu ultrasonik telah dicadangkan sebagai kaedah alternative. 20kHz ultrasonik tinggi telah digunakan dalam pengekstrakan iberkeamatan karrageenan daripada Euchema Denticalatum dengan air sebagai pelarut. Hasil i-karrageenan telah meningkat sebanyak 50.0 hingga 57.2%. Korelasi matematik mudah untuk menganggar pekali pemindahan jisim pepejal - cecair telah diterbitkan berdasarkan keadaan pengoperasian iaitu VIZ., amplitud, saiz zarah, dan suhu bagi pengekstrakan untrasonik i-karrageenan. Tambahan lagi, kaedah penganggaran konvensional i-karrageenan dalam larutan akuas memerlukan penyah-polimeran and tempoh yang lebih lama. Kaedah spektroskopi ultrasonik dengan rangkaian neural juga telah dibangun sebagai kaedah alternatif. Beberapa model rangkaian neural buatan telah diguna seperti, Back propagation (BP), Radial basis function (RBF) dan modified functional link neural network (FLNN). Kaedah RBF mendapati masa penganggaran yang rendah iaitu 26 saat. Pengubahsuaian i-karrageenan dengan kehadiran Ag⁺ menghasilkan sifat gel yang lebih baik. Ia lebih berguna kepada industri farmaseutikal. Sifat psiko-kemikal seperti resapan pasif, kekuatan gel, histerisis dan struktur mikro gel i-karrageenan terubah telah diuji. Didapati bahawa kehilangan berat gel melalui resapan pasif adalah dalam julat 0.7-1.2% dan pada tempoh 240 jam. Gel menunjukkan kekuatan yang semakin tinggi apabila kepekatan Ag⁺ meningkat, manakala tahap keelastikan pula semakin menurun. Masa penenangan maksimum yang dicapai adalah pada kepekatan 70mM Ag⁺, manakala pada kepekatan yang lebih tinggi, gel menjadi semakin tepu. Histerisis bagi gel terubah dapat diperhatikan di antara suhu gelatin (T_{α}) dan penyerakkan (T_{f}) , dan ianya sangat bergantung kepada kepekatan Ag⁺. Imej SEM bagi filem campuran menunjukkan ketidakrataan permukaan gel berkadar songsang dengan peratusan ikarrageenan. Keputusan daripada kaedah baru dan korelasi yang ditemui daripada kajian ini menawarkan pengaplikasian untuk penghasilan produk baru dalam industri proses yang berasaskan ikarrageenan.

ABSTRACT

STUDIES ON PHYSICO-CHEMICAL CHARACTERISTICS OF IOTA- CARRAGEENAN EXTRACTED BY ULTRASONIC METHOD

Carrageenans are water-soluble natural gums, which occur in certain species of seaweeds. They are sulfated natural biopolymers made up of galactose units. The major varieties of seaweeds are available from South China Sea at Sabah are Caulerpa, Ulva, Sargassum, Eucheuma, Gracilaria, Gelidiella and Kappaphycus. The thermal extraction of icarrageenan from seaweed does not give high yield and time consuming. Ultrasonic assisted extraction was proposed as an alternative method. The 20 kHz high intensity ultrasound was used in the extraction of i-Carrageenan from Eucheum denticulatum by using water as solvent. i-carrageenan yield increased from 50 to 57.2%. A simple mathematical correlation for the estimation of the solid-liquid mass transfer coefficient was derived in terms of operating conditions VIZ., amplitude, particle size and temperature for ultrasonic extraction of *i-Carrageenan*. The diffusion coefficient of *i-Carrageenan* in water was estimated from the mass transfer coefficient.Further more the conventional estimation methods of i-carrageenan in aqueous solutions need depolymerization and longer duration. The ultrasonic spectroscopy technique coupled with neural network has been developed as a alternative. In that the artificial neural network models such as Back Propagation (BP), Radial Basis Function (RBF) and modified Functional Link Neural Network (FLNN) were used. As the RBF method showed the low estimation time of 26 sec. The modification of i-carrageenan in presence of Ag⁺ produced better gel characteristics. It could be more useful in pharmaceuticals industries. The physico-chemical properties like passive diffusion, gel strength, hysterisis and micro structure of modified i-Carrageenan gels were tested. The weight loss of the gels in passive diffusion was found to be in the range 0.7-1.2% at 240 h. The gels exhibited high firmness as the Aa⁺ concentration increased while decrease in the elasticity was observed. The relaxation time reached maximum at 70 mM of Aq^{+} and at higher concentration the gels exhibited saturation. The hysterisis of the modified gels was observed between gelation (T_a) and dissolution (T_f) temperatures and it was strongly dependent on Aq ⁺ concentration. The SEM images of the blended films showed that the roughness varies inversely with the percentage of i-Carrageenan. The results of new methods and correlations developed offer unprecedented scope of applications for developing new i-Carrageenan based products in the process industries.

ABBREVIATION

BP	Back Propagation Procedure
DSP	Digital Signal Processing
EBP	Error Back Propagation Procedure
FLNN	Functional Link Neural Network
LMS	Least Mean Square
NMSE	Normalized Mean Square Error
RBF	Radial Basis Function
SEM	Scanning Electron Microscope

SYMBOLS

А	Amplitude (m)
а	Interfacial area (mm ²)
C _A	i-Carrageenan concentration (kg/m ³)
C_{A}^{*}	i-Carrageenan equilibrium concentration (kg/ m ³)
D_p	Diameter of the particle (mm)
D _{AB}	Diffusion coefficient of i-carrageenan in water (m ² /s)
f	Frequency (Hz)
Ι	Sound wave intensity (W/m ²)
K _L	Solid-liquid mass transfer coefficient (m/s)
r 🖉 💌	Constant
5	Constant
T SA BA	Temperature (°C)
t _e	Extraction time (s)
V	Volume of the reactor (ml)
Greek Letters	
δ	AC boundary layer thickness (m)
μ	Dynamic viscosity (kg/m-s)
Y	Kinematic viscosity (m ² /s)
ρ	Density of liquid (kg/m ³)
ω	Angular frequency (rad /s)
ψ, β	Constants

CONTENTS

DECL	ARATIO	Ν	ii
ACKN	OWLED	GEMENT	iii
ABST	RAK		iv
ABST	RACT		V
ABBR	EVIATIC	DN	vi
SYMB	OLS		vii
CONT	ENTS		vii
LIST	OF TABL	ES	xiv
LIST	of figu		xv
СНАР	TER 1	INTRODUCTION	
1.1		al introduction	1
1.2	Backg		2
1.3		s of Carrageenans	5
1.4		cation of Carrageenan	6
1.5		ations of Carrageenans	9
	1.5.1	Technical	9
	1.5.2	Medical	9
	1.5.3	Agriculture	10
	1.5.4	Pharmaceutical	10
	1.5.5	Personal care and household	10
	1.5.6	Food	11
	1.5.7	Biotechnology	11

1.6	The fu	ture of Carrageenan	12
1.7	Activit	ies of research	12
1.8	Organ	ization of thesis	13
CHAPT	TER 2	LITERATURE REVIEW	
2.1	Introd	uction	16
2.2	Microe	elements analysis of Malaysian seaweeds	16
2.3	Iota-ca	arrageenan extraction from seaweed	19
2.4		ation of i-Carrageenan concentration using artificial networks coupled with ultrasonic waves	22
2.5		matical modeling of solid-liquid mass transfer coefficient of ageenan	23
2.6	Modifi	cation of i-Carrageenan with Ag ⁺	25
2.7	Conclu	usion	26
CHAP	TER 3	MINERAL CONTENT DISTRIBUTION OF SOME SEAWEEDS FROM SOUTH CHINA SEA AT SABAH.	
3.1	Introd	uction	27
3.2	Materi	als and methods	27
	3.2.1	Materials	27
	3.2.2	Estimation of ash content	28
	3.2.3	Mineral content by atomic adsorption spectrometer	28
3.3	Result	s and discussion	29
	3.3.1	Ash content	29
	3.3.2	Mineral composition	29
	3.3.3	Seasonal effects	31
3.4	Conclu	ision	38

ix

CHAPTER 4 ULTRASOUND-ASSISTED EXTRACTION OF IOTA-CARRAGEENAN FROM SEAWEED (*EUCHEUMA DENTICULATUM*)

4.1	Introd	uction	39
4.2	Materi	als and methods	39
	4.2.1	Seaweed particles preparation	39
	4.2.2	Ultrasound-assisted extraction	40
	4.2.3	Estimation of i-Carrageenan by Colorimetric method	42
4.3	Result	s and discussion	43
	4.3.1	Carrageenan yield in thermal extraction	43
	4.3.2	Extraction of i-Carrageenan using ultra sound	45
		i) Influence of ultrasonic wave amplitude on i-Carrageenan yield	45
		ii) Influence of temperature on iota-carrageenan yield	51
4.4		arison between thermal and ultra sound extraction ods (Conclusion)	52
CHAP ⁻	TER 5	NEURAL NETWORK MODELING WITH APPLICATION OF ULTRASONIC WAVES FOR ESTIMATION OF CARRAGEENAN IN AQUEOUS SOLUTIONS	
5.1	Introd	uction	53
	5.1.1	Analysis of materials using sonic waves	53
5.2	Materi	als and methods	54
5.3	Netwo	ork architecture	57
	5.3.1	Back propagation	57
		i) Network training for BP	57
		ii) Algorithm for BP	58
	5.3.2	Radial basis function neural networks	59
		i) Network training for RBF	61

	5.3.3	FLNN with hidden layer (method –I)	62
		i) Network training for FLNN (method –I)	62
		ii) Algorithm for FLNN (method –I)	63
	5.3.4	FLNN with extended functional Link at the hidden layer (method – II)	65
		i) Network training for FLNN (method –II)	65
		ii) Algorithm for FLNN (method –II)	66
5.4	Result	s and discussion	67
5.5	Conclu	ision	73
5.6	Nome	nclature	73
CHAPT	TER 6	SOLID-LIQUID MASS TRANSFER STUDIES IN ULTRASOUND- ASSISTED EXTRACTION OF IOTA-CARRAGEENAN FROM SEAWEED (EUCHEUMA DENTICULATUM)	
6.1	Introd		75
	6.1.1	Swelling of particles	75
6.2	Methods		77
	6.2.1	Determination of amplitude of ultrasonic waves	77
6.3	Mathe	matical Modeling	77
	6.3.1	Estimation of diffusion coefficient	79
6.4	Result	s and discussion	80
	6.4.1	Estimation of solid-liquid mass transfer coefficient	80
		 i) Influence of ultrasonic wave amplitude on solid-liquid mass transfer coefficient 	80
		ii) Influence of particle diameter on solid-liquid mass transfer coefficient	82
		iii) Influence of temperature on solid-liquid mass transfer coefficient	83

xi

	6.4.2	Seaweed particle swelling	84
	6.4.3	Correlation of solid-liquid mass transfer coefficient	87
	6.4.4	Estimation of i-Carrageenan diffusivity (D_{AB}) from the solid-liquid mass transfer coefficient (K_L)	88
6.5	Conclu	sion	90
CHAPT	TER 7	PHYSICO - CHEMICAL PROPERTIES OF IOTA-CARRAGEENAN GELS IN PRESENCE OF SILVER CATIONS	N
7.1	Introd	uction	91
7.2	Materi	als and methods	92
	7.2.1	Materials	92
	7.2.2	Passive diffusion test for water holding capacity	92
	7.2.3	Determination of gel textural properties	93
		i) Esti <mark>mation o</mark> f Firmness, Elasticity, Relaxation time	93
	7.2.4	Thermorheological properties of i-Carrageenan/Ag ⁺	94
	7.2.5	Scanning electron microscopy (SEM) MALAYSIA SABAH	94
	7.2.6	Statistical analysis	95
7.3	Result	and discussion	95
	7.3.1	Water holding capacity by passive diffusion	95
	7.3.2	Gel texture properties	96
	7.3.3	Effect of temperature on rheological behavior of i-Carrageenan in presence of Ag ⁺	99
	7.3.4	Structural evaluation by SEM	104
7.4	Conclu	sion	106
CHAPT	TER 8	CONCLUSION	
8.1	Resear	rch Findings	108
8.2	Future	research	110

xii

REFERENCES		111
APPENDIX A:	Type of seaweeds available in Malaysian seacoast	129
APPENDIX B:	i-Carrageenan yield data by thermal and ultrasonic extraction	136
APPENDIX C:	Ultrasound signals for estimation of carrageenan in aqueous solutions	144
APPENDIX D:	Model Calculation for estimation of mass transfer coefficient	149
APPENDIX E:	Technical papers derived from this thesis	166

REFERENCES

APPENDIX A:	Type of seaweeds available in Malaysian seacoast	129
APPENDIX B:	i-Carrageenan yield data by thermal and ultrasonic extraction	136
APPENDIX C:	Ultrasound signals for estimation of carrageenan in aqueous solutions	144
APPENDIX D:	Model Calculation for estimation of mass transfer coefficient	149
APPENDIX E:	Technical papers derived from this thesis	166

111

LIST OF TABLES

Table 3.1	Ash content of seaweeds	30
Table 3.2	Multi elemental data of Sabah seaweeds collected in the month of January' 2004	32
Table 3.3	Multi elemental data of Sabah seaweeds collected in the month of July' 2004	33
Table 3.4	Comparison of the current study with the published summary	
	data on the mineral content of the seaweed.	34
Table 5.1	Network training phase	72
Table 6.1	r and s values of Equation 6.8	84
Table 6.2	Experimental and predicted mass transfer coefficients of different particle diameter, amplitude and temperature	85
Table 6.3	Diffusion coefficient (D _{AB}) of i-Carrageenan in water	89
Table 7.1	Water holding capacity W / W _o of 1% modified i- Carrageenan gels at 240 h storage at 4°C	96

LIST OF FIGURES

Figure 1.1	Taxonomical tree of carrageenan-bearing seaweeds	3
Figure 1.2	Distribution the seaweed species in the world	3
Figure 1.3	Cross-section of seaweed	4
Figure 1.4	Different types of carrageenan molecular structures	6
Figure 1.5	Gelation mechanism of carrageenan	8
Figure 1.6	Organization of the thesis	15
Figure 3.1a	Iron content of various seaweeds	35
Figure 3.1b	Zinc content of various seaweeds	35
Figure 3.1c	Magnesium content of various seaweeds	36
Figure 3.1d	Arsenic content of various seaweeds	36
Figure 3.1e	Calcium content of various seaweeds	37
Figure 3.1f	Potassium content of various seaweeds	37
Figure 3.1g	Sodium content of various seaweeds	38
Figure 4.1	Experimental apparatus used for ultrasonic extraction	41
Figure 4.2	i-Carrageenan standardization plot	42
Figure 4.3	i- Carrageenan yield at various temperatures of 0.7125 mm diameter of seaweed particles	43
Figure 4.4	i- Carrageenan yield at various temperatures of 1.2 mm diameter of seaweed particles	44
Figure 4.5	i- Carrageenan yield at various temperatures of 1.7 mm diameter of seaweed particles	44
Figure 4.6	i-Carrageenan yield at different amplitudes of ultrasound at 30°C and 0.7125 mm diameter particles	45
Figure 4.7	i-Carrageenan yield at different amplitudes of ultrasound at 40°C and 0.7125 mm diameter particles	46

Figure 4.8	i-Carrageenan yield at different amplitudes of ultrasound at 50°C and 0.7125 mm diameter particles	46
Figure 4.9	i-Carrageenan yield at different amplitudes of ultrasound at 60°C and 0.7125 mm diameter particles	47
Figure 4.10	i-Carrageenan yield at different amplitudes of ultrasound at 30°C and 1.2 mm diameter particles	48
Figure 4.11	i-Carrageenan yield at different amplitudes of ultrasound at 40°C and 1.2 mm diameter particles	48
Figure 4.12	i-Carrageenan yield at different amplitudes of ultrasound at 50°C and 1.2 mm diameter particles	49
Figure 4.13	i-Carrageenan yield at different amplitudes of ultrasound at 60°C and 1.2 mm diameter particles	49
Figure 4.14	i-Carrageenan yield at different amplitudes of ultrasound at 30°C and 1.7 mm diameter particles	50
Figure 4.15	i-Carrageenan yield at different amplitudes of ultrasound at 40 <mark>°C and 1.</mark> 7 mm diameter particles	50
Figure 4.16	i-Carrageenan yield at different amplitudes of ultrasound at 50°C and 1.7 mm diameter particles	51
Figure 4.17	i-Carrageenan yield at different amplitudes of ultrasound at 60°C and 1.7 mm diameter particles	51
Figure 5.1	i-Carrageenan present in aqueous solution	54
Figure 5.2	Experimental setup for estimation of i-carrageenan	55
Figure 5.3	Line diagram of experimental setup	55
Figure 5.4	Original frequency band spectrum	56
Figure 5.5	Typical one third octave frequency spectrum at 4 cm from dBFA software	56
Figure 5.6	Architecture of back propagation network	57
Figure 5.7	Architecture of radial basis function neural network	60
Figure 5.8	Proposed FLNN with hidden layer (method – I)	63

Figure 5.9	Proposed FLNN with extended functional link at the hidden layer (method – II)	65
Figure 5.10	Cumulative error versus epoch for BP	68
Figure 5.11	Prediction errors for different Samples for BP	69
Figure 5.12	Cumulative error versus epoch for RBF	69
Figure 5.13	Actual and predicted concentration for samples for RBF	70
Figure 5.14	Cumulative error versus epoch – FLNN proposed method – I	70
Figure 5.15	Actual and predicted concentration for samples – FLNN proposed method – I	71
Figure 5.16	Cumulative error versus epoch – FLNN proposed method – II	71
Figure 5.17	Actual and predicted concentration for samples – FLNN proposed method – II	72
Figure 6.1	Effec <mark>t of amp</mark> litude on mass transfer coefficient at 30°C	81
Figure 6.2	Effect of particle diameter on mass transfer coefficient at 30°C	82
Figure 6.3	Effect of temperature on mass transfer coefficient A SABAH at 60% amplitude	83
Figure 6.4	Seaweed particles swelling at different temperature	84
Figure 6.5	Seaweed particles swelling at different timings inside the ultrasonicator	85
Figure 6.6	Comparison of experimental and predicted mass transfer coefficient	88
Figure 7.1	Hounsfield H1KF texture analyzer	93
Figure 7.2	Scanning electron microscopy	94
Figure 7.3	i-Carrageenan gels change in color before and after reaction with $\mbox{Ag}^{\rm +}$	95
Figure 7.4	Water holding capacity of modified 1% i-Carrageenan gels with different Ag ⁺ concentrations. The gels were stored at 4° C	96

37	1.7	1	τ.	1
- X	v	L	۱.	н
		•	^	•

Figure 7.5	Effect of Silver (Ag ⁺) on firmness of i-Carrageenan gels at 30 °C	98
Figure 7.6	Effect of Silver (Ag ⁺) on Elasticity of i- Carrageenan gels at 30 °C	98
Figure 7.7	Effect of Silver (Ag ⁺) on Relaxation time of i-Carrageenan gels at 30 °C	99
Figure 7.8	Evaluation of viscosity on heating of 1% i-Carrageenan solution with different concentration of silver cation	100
Figure 7.9	Evaluation of viscosity on heating of 1.5 % i-Carrageenan solution with different concentration of silver cation	100
Figure 7.10	Evaluation of viscosity on heating of 2 % i-Carrageenan solution with different concentration of silver cation	101
Figure 7.11	Evaluation of viscosity on cooling of 1 % i-Carrageenan solution with different concentration of silver cation	101
Figure 7.12	Evaluation of viscosity on cooling of 1.5 % i-Carrageenan solution with different concentration of silver cation	102
Figure 7.13	Evaluation of viscosity on cooling of 2 % i-Carrageenan solution with different concentration of silver cation	102
Figure 7.14	Hysteresis cycle of i-Carrageenan/Ag ⁺ solution	103
Figure 7.15	SEM images for 1:1 ratio of i- Carrageenan / Ag ⁺	104
Figure 7.16	SEM images for 2:1 ratio of i- Carrageenan / Ag ⁺	105
Figure 7.17	SEM images for 5:1 ratio of i- Carrageenan / Ag $^+$	105
Figure 7.18	SEM images for 60:1 ratio of i-Carrageenan / Ag ⁺	106

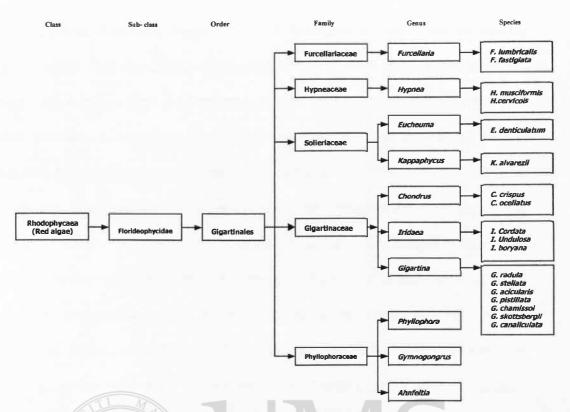
CHAPTER 1

INTRODUCTION

-1 General introduction

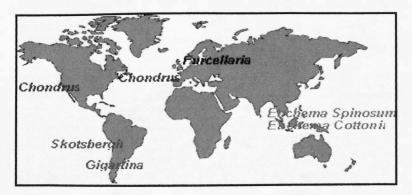
For several hundred years, carrageenan has been used as a thickening and stabilizing agent in food in Europe and the Far East. In Ireland the use of carrageenan started more than six hundred years ago. In the village of Carraghen on the south Irish coast, flans were made by cooking the so-called Irish moss (red seaweed species *Chondrus crispus*) in milk. The name carrageenin, the old name for carrageenan, was first used in 1862 for the extract from *C. crispus* and dedicated to this village [Tani. M *et al.* 2003]. From the 19th century Irish moss was also used for industrial beer clarification and textile sizing. The commercial production began late in 1930's in the US. During that time, the trading shifted from dried seaweed meal to refined carrageenan [Therkelsen 1993].

After the Second World War, a general increase in the standard of living forced an increase in carrageenan production. Fractionation of crude carrageenan extracts started in the early 1950's, resulting in the characterization of the different carrageenan types. The Greek prefixes kappa, iota and lambda were introduced to identify the different carrageenans. In the same period the molecular structure of carrageenans was determined [Vreeman *et al.* 2004]. The structure of 3,6-anhydro-D-galactose in k-Carrageenan as well as the type of linkages between galactose and anhydrogalactose-rings was determined. Today, the industrial manufacture of carrageenan is no longer limited to the extraction from Irish moss, but numerous red seaweed species are used. Traditionally these seaweeds have been harvested from naturally occurring populations. Farming of seaweed to increase the production


started almost 200 years ago in Japan. Scientific information about the seaweed life cycles, allowed artificial seeding in the 1950's. Today, nearly a dozen seaweeds are commercially cultivated and, thus, lowering the pressure on naturally occurring populations.

2 Background

Malaysia especially Sabah is a maritime state with more than three quarters of its boundaries abutting the sea. Seaweeds are Algae, which are classified by their pigment. These are non-flowering plants with neither roots nor leaves. Moreover, these are obviously found attached to a fixed structure by means of a holdfast. They come in a variety of forms, from microscopic single-cells to filamentous shape and large bushy growths.


Most of the seaweeds are growing from intertidal zone until a depth of 30 – 40 meter. Normally 75% - 90% weight of fresh seaweeds is contained water [Philip Sze. 1986]. The dry weight is included 75% organic and 25% heavy metal such as potassium, sodium, magnesium and ion calcium [Robledo and Delegrin. 1997]. Seaweeds are classified into four main groups based on the presence of the main photosynthetic pigments: the green (division *Clorophyta*), red (division *Rhodophyta*), brown (division *Phyaeophyta*) and blue-green algae (Fig. 1.1) [Ridzam Hashim. 1993, In A. Steinbüchel *et al.* 2002, De Velde *et al.* 2002].

The majority seaweeds around the ocean of Malaysia are of division *Rhodophyta* which consists of 45 species. Besides that, division *Chlophyta* has 41 species and division *Phyaeophyta* has 24 species. The seaweeds which are found off the Sabah coasts are commonly *Eucheuma (Rhodophyta), Gracilaria (Rhodophyta), Sargaassum (Phyaeophyta), Caulerpa (Cyanophyta), Turbinaria (Phaeophyta), Dictyota (Phaeophyta), and Padina (Phyaeophyta) [De Ruiter <i>et al.* 2002].

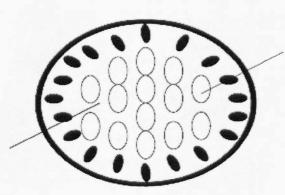
Figure 1.1: Taxonomical tree of carrageenan-bearing seaweeds

Seaweeds, which may surprise the common man, have many economic uses. They are traditionally used in the country as food, animal feed, fertilizer, and in the preparation of traditional medicine. Each type of seaweed has their use. For example the red algae, Eucheuma sp (Fig 1.2) consists of carrageenan and is cultured on reef flats in Sabah.

Figure 1.2: Distribution of the seaweed species in the world

Nowadays, in the world about 70 to 80% Carrageenan are extracted by using two main species of which are *Eucheuma cottonii* and *Eucheuma spinosum* from

3


Divisi *Rhodophyta.* The main factor to extract carrageenan from these species is, easy plantation in sea. Besides that, by using different ways of extraction different structure can result, which accompany with the variety physical properties and chemical properties. k-Carrageenanis obtained from *Eucheuma cottonii* and i-Carrageenan from *Eucheuma spinosum* [Baker 1984, Anna 1980].

In the last few years, the requirement of carrageenan applications are increasing constantly by at least 5 -7 percent per annum. The reason of increasing requirement of carrageenans is its unique ability to form an almost infinite variety of gels at room temperature, rigid or compliant, tough or tender with high or low melting point. Despite the similarity of its molecular structures, the gels have very different properties. Carrageenan solutions will thicken, suspend and stabilize particulates as well as colloidal dispersions and water/oil emulsions. Therefore, the Carrageenan solution will give the good performance in rheological properties [Anna 1980].

NIVERSITI MALAYSIA SABAH

Carrageenan is a natural marine colloidal gum, which is a jelly-like substance. It is an anionic polysaccharide extracted from marine red algae and exists in the voids within the (Fig 1.3) cellulose structure of Red seaweed [Luning 1990].

Carrageenan fills spaces between plant cells

Cellulosic Material

Figure 1.3: Cross-section of seaweed

4