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ABSTRACT 

MATERIAL DEPOSITING ROBOT ARM FOR ARC WELDING: 
STRUCTURE & DRIVING MECHANISM 

This thesis presents the research work on the design and modeling of a 3-DoF robot 
arm as part of the 6-DoF arc welding robot called Robotums RA-Ol developed at 
Centre of Materials & Minerals, Universiti Malaysia Sabah. A 3-DoF robot arm has 
been designed with the ability to interface with a forearm mechanism developed by 
Chua (2007) to form a complete 6-DoF arc-welding robot with a maximum reachable 
distance of 1,300mm and a handling payload of 6kg at the wrist center. As well as 
designing of the robot-arm mechanics and structure, and the driving system design 
fundamentals. The robot kinematics model has been developed to serve as the 
fundamental mechanics of the robot-arm system. Modified Denavit-Hartenberg 
frame aSSignment is introduced to resolve the complexity of the skeleton structure 
frame aSSignment with a final reference coordinate frame been fixed, which leads to 
the forward and inverse kinematics model formulation. Each joint of the designed 
robot arm is given a degree of freedom by attaching a joint driving system using 
servomotors and harmonics drive partnership. The joint driving systems are 
designed based on the criteria to meet acceleration and manipulation of the robot­
arm structures and inertia masses achieving the 6kg payload at the wrist center 
point. Prediction of harmonic drive safety functional life span of the shortest period 
of 8 years is achieved at 1st joint driving system before failure is anticipated. The 
robot arm 3-D virtual prototype linkage structures are designed through SolidWorks 
to meet the design requirement of a maximum deflection value of 0.257mm and an 
equivalent stiffness of 295717.5 N/mm for 6kg payload acting at the wrist center has 
also been achieved. The main linkage structures design involved the theoretical 
model, and the iteration or numerical via CAD with CAE verification has been 
introduced. For analyzing the theoretical dynamic behavior of the robot arm, a 
dynamic model of the arm has been developed based on the Lagrange approach. An 
ideal theoretical dynamic model, neglects on the frictional force terms are simulated 
in the development of inverse dynamic solutions of the jOint torques. A close-to real 
life dynamic simulation or 3-D motion numerical analysis has also been performed 
through CosmosMotion CAE application tool for comparison and verification of the 
results with the theoretical model. The linear trajectory simulation of the GMAW 
robot-arm wrist center Cartesian position error range of O.OOmm to 0.35mm is 
achieved at 400 mm/min for standard gas metal welding operation, which permitted 
tolerance variation position between the arc and joint gap not to exceed more than 
+0.5 mm. Therefore, the designed GMAW robot-arm has successfully met the 
requirement of gas metal arc welding operation. 
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ABSTRAK 

Tesis ini mempersembahkan hasi/ penye/idikan dan reka bentuk sebuah robot /engan 
yang mempunyai tiga datjah kebebasan (3-DoF) yang merupakan sebahagian 
daripada robot kimpa/an arka/ Robotums Ra-Ol yang dihasi/kan daripada Pusat 
Bahan dan Ga/ian Universiti Ma/aysia Sabah. Robot /engan ini direka untuk 
pengabungkan sebuah mekanisma /engan hasil ciptaan Chua (2007) supaya sebuah 
robot enam datjah kebebasan dihasi/kan dengan menpunyai kemampuan me/iputi 
1300mm jarak jangkauan dan mengangkat berat muatan sebanyak 6kg di pusat 
perge/angan. Ketja-ketja penyelldikan dan reka bentuk robot /engan ini ada/ah 
merangkumi asasi-asasi seperti robot /engan mekanily reka bentuk struktur badan 
dan sistem pemacuan. Kinamatik model /angsungan dan songsangan yang 
merupakan asasi kepada sistem mekanik robot /engan dibentuk dengan berpandukan 
konsep Denavit-Hartenberg da/am penetapan kedudukan koordinat rangka yang 
te/ah diubahsuai dengan kesesuaian rekabentuk rangka robot /engan. Setiap sendi 
atau penyambungan dikurniakan satu datjah kebebasan dengan kehadiran sistem 
pemacuan yang terdiri dari gabungan motor servo dan gear harmonik dan ia direka 
dengan berpandukan ciri-ciri asas motor servo dan gear harmonik membo/ehkan 
struktur robot /engan dapat digerakkan dengan ke/ajuan yang ditetapkan dengan 
kehadairan berat muatan 6kg di pusat perge/angan. Setiap sistem pemacuan sendi 
dijangkakan mempunyai 8 tahun hayat berfungsi dengan jangkaan kerosakan awa/ 
berlaku ke atas sistem pemacuan sendi pertama. Model robot /engan da/am bentuk 
3-D maya yang dihasilkan dengan penggunaan So/idWorks te/ah memenuhi syarat 
reka bentuly di mana pembiasan maksima adalah 0.257mm bersama kekakuan 
kesamaan sebanyak 295717.5N/mm dengan kehadiran berat muatan 6kg di pusat 
perge/angan. Ke/akuan robot /engan ini dikaji secara dinamik dengan pembangunan 
model teori dinamik yang berasaskan konsep Lagrange's mengabaikan sebarangan 
kuasa yang disebabkan o/eh geseran disimu/aslkan secara songsangan model 
dinamik untuk pencarian tork sendi. Simu/asi nyata da/am bentuk 3-D maya 
dilakukan untuk tujuan pemerhatian gerakan robot /engan secara kaedah berangka. 
Hasil penye/idikan secara kaedah berangka dan teori dlbanding dan dlbincangkan. 
Pergerakan /urus kimpalan arka dengan kelajuan 4000mm/min te/ah disimuiaslkan 
dan menunjukkan ketepatan (kedudukan) pusat pergelangan robot /engan ada/ah 
antara O.OOmm ke 0.35mm yang berada da/am had yang dibenarkan (+O.5mm) 
da/am piawaian kimpa/an arka. Dengan im~ robot /engan yang dicipta te/ah berjaya 
mencapai keper/uan kimpalan arka. 
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DoF Degree of freedom 

01 Link length of i-th joint 

d
l 

Joint osset of i-th joint 

kel Unit of vector of i -th joint axis 

keq Equivalent stiffness 

m, Mass properties of i-th link 

mpay'notl Payload 

n, Number of link 

n
J 

Number of joint 

XI x-axis of i-th joint 

YI y-axis of i-th joint 

Zi z-axis of i-th joint 

xxi 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Implementation of robotics is the main key to modern manufacturing systems and it 

will continue to evolve and succeed. Automobile productions are examples of 

successful modern manufacturing system, which are steadily increasing year by year 

and in year 2006 alone the world car production is over 69 millions units (OICA, 

2006). Robotics has played a great role in the automobile industries to achieve these 

production volumes, where almost each automobile production processes can be 

robotized. These facts have become an encouragement of this research project in 

developing a material deposition automation with emphasize on gas metal arc 

welding (GMAW) robot structure and driving mechanism. Through this development, 

it will become a motivation for Malaysia manufacturing industries to adopt local robot 

technology rather than a total dependent on foreign technology. The challenges, 

objectives, scope, methodology, and thesis organization are summarized through a 

review on material deposition robot. 

1.2 MATERIAL DEPOSITION 

Material deposition can be defined as a process of delivering of a matter onto a base 

material. The matter is a material that may be of the same or different material 

properties as the base material. The common material deposition process includes 

metal joining, surface coating, electronic circuit board printing, and other processes. 

1.2.1 Welding - Gas Metal Arc Welding (GMAW) 

Welding is a material deposition process where two materials are united together by 

adding a filler material. According to British Standard - Welding Terms and 

Symbols, welding is defined as, \IAn operation in which two or more parts are united, 

by means of heat or pressure or both, in such a way that there is continuity in the 

nature of the metal between these parts. A filler metal, the melting temperature of 

which is of the same order as that of the parent metal, mayor may not be used." 
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Welding processes are divided into two types of welding principles, which are 

welding with pressure and fusion welding. Welding with pressure is a joining 

process by applying pressure and heat. Resistance welding, cold pressure welding, 

diffusion bonding, and explosion welding are examples of welding by pressure. In 

fusion welding, a heat source is utilized to create a weldment between two materials 

or filler material such as consumable electrode or wire. As the weldment solidifies, 

the two materials are joined together. Fusion welding includes those of arc welding, 

gas welding, aluminothermic welding, electron beam welding, electro-slag welding 

and light radiation welding (Norish, 1992). 

Gas metal arc welding (GMAW) or formerly known as metal inert gas welding 

(MIG) is a semi or fully-automatic fusion welding process for both ferrous and non­

ferrous metals. The GMAW process produces a weldment between the work pieces 

and continuously fed the consumable filler electrode wire by heating them with an 

electric arc. Deoxidizers are presented in the electrode itself and also as addition to 

prevent oxidation from supplies of inert gas such as argon; helium; mixtures of argon 

and helium for non ferrous metals; and oxygen or carbon dioxide can be utilized for 

ferrous metals. During the process, shielding gas forms arc plasma to stabilize the 

arc on the metal being welded. It also shields the arc and molten weld pool from 

oxidization and allows smooth transfer of metal from the weld wire to the molten 

weld pool. Figure 1.1 illustrates the GMAW process and its elements. The applications 

of GMAW generally use a constant voltage and direct current polarity to the 

electrode. This welding process has been developed since 1950s, which utilizes a 

large diameter of steel electrode shielded by carbon dioxide gas. Improvement and 

development of welding power source technology and introduction of gas mixtures 

acting as shielded gas has enhanced the GMAW process such that thinner base 

material can be permitted for welding, providing opportunity for all-position welding, 

almost spatter free with excellent fusion at low heat input, and excellent weld bead 

appearance. In GMAW, magnitude of the current and voltage along types of shielding 

gas and diameter of electrode has been applied to affect the type of metal transfer 

mode. There are four metal transfer modes such as globular, short-circuiting, spray, 

and pulsed-spray each method has their own distinct properties and advantages. 

GMAW processes are commonly found in automotive, furniture, ship building, 

building construction and other industries. (Norish, 1992; Cary, 1995; Helzer, 2005). 
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