# MATERIAL DEPOSITING ROBOT ARM FOR ARC WELDING: STRUCTURE & DRIVING MECHANISM

# CHOONG WAI HENG (PS04-008-014)

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

# THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF ENGINEERING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2008



# UNIVERSITI MALAYSIA SABAH

| BORANG PEN                                                                                                                                                                                                            | IGESAHAN STATUS THESIS®                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JUDUL : MATERIAL DEPOSITING<br>STRUCTURE & DRIVING                                                                                                                                                                    | G ROBOT ARM FOR ARC WELDING:<br>MECHANISM                                                                                                                           |
| IJAZAH : SARJANA KEJURUTERA                                                                                                                                                                                           | AN (ROBOTIK DAN AUTOMASI INDUSTRI)                                                                                                                                  |
| SESI PENGAJIAN : 2004-2008                                                                                                                                                                                            |                                                                                                                                                                     |
| Saya, CHOONG WAI HENG meng<br>Perpustakaan Universiti Malaysia Saba                                                                                                                                                   | jaku membenarkan tesis Sarjana ini disimpan di<br>Ih dengan syarat-syarat kegunaan seperti berikut:                                                                 |
| <ol> <li>Tesis adalah hakmilik Universiti Ma</li> <li>Perpustakaan Universiti Malaysia S<br/>pengajian saya.</li> <li>Perpustakaan dibenarkan membua<br/>institusi pengajian tinggi.</li> <li>TIDAK TERHAD</li> </ol> | alaysia Sabah.<br>Gabah dibenarkan membuat salinan untuk tujuan<br>at salinan tesis ini sebagai bahan pertukaran antara<br>PERPUSTAKAAN<br>NIVERSITI MALAYSIA SABAH |
| Ruf                                                                                                                                                                                                                   | Disahkan oleh                                                                                                                                                       |
| (Penulis: CHOONG WAI HENG)<br>Alamat:                                                                                                                                                                                 | (TANDATANGAN PUSTAKAWAN)                                                                                                                                            |
| 430, Laluan Simee 9,<br>Simee,<br>31400 Ipoh,<br>Perak, Malaysia.                                                                                                                                                     |                                                                                                                                                                     |
| Tarikh: 8 Julai 2008                                                                                                                                                                                                  | (Penyelia: Prof. Dr. Yeo Kiam Beng @ Abdul Noor)<br>Tarikh: <u>して July 200</u> ま                                                                                    |

**CATATAN :** <sup>®</sup> Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM)



# DECLARATION

I hereby declare that the material in this thesis is the sole works of mine except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

CHOONG WAI HENG (PS04-008-014)

30<sup>th</sup> June 2008

PERPUSTAKAAN UNIVERSITI MALAV'



## CERTIFICATION

- TITLE : MATERIAL DEPOSITING ROBOT ARM FOR ARC WELDING: STRUCTURE & DRIVING MECHANISM
- DEGREE : MASTER OF ENGINEERING (ROBOTICS AND INDUSTRIAL AUTOMATION)
- VIVA DATE : 25<sup>TH</sup> JUNE 2008

**DECLARED BY** 

ZA .... (signature)

SUPERVISOR Professor Dr. Yeo Kiam Beng @ Abdul Noor



# ACKNOWLEDGMENTS

I would first like to thank my supervisor, Prof. Dr. Yeo Kiam Beng @ Abdul Noor for his guidance, assistance, critique and support throughout the development of this research project. Other than my supervisor, I also thanks to Dr. Mohamed Harimi for kind support and attention of the research project development.

I would like to acknowledge the support of Universiti Malaysia Sabah Foundation by granting a ZAMALLAH Scholarship to me for my further studied in Universiti Malaysia Sabah. Other than that, thank to the staff of School of Engineering and Information Technology and Centre of Postgraduate Studies for their supports.

My appreciation goes to all my friends Chua Bih Lii, Lim Eng Har, Mohd Aidy Faizal Johari, Han, Guan, Fong and others that have directly or indirectly involved in this research project. I would also like to express my great appreciation to Doris Ng, who's has been supported and encouraged me for completing this research project.

Finally, I would like to thank my parent and family member who have been very supportive and patient with me since I was born. I hope I will be started to contribute to them. Thanks.

CHOONG WAI HENG 30<sup>th</sup> June 2008



## ABSTRACT

### MATERIAL DEPOSITING ROBOT ARM FOR ARC WELDING: STRUCTURE & DRIVING MECHANISM

This thesis presents the research work on the design and modeling of a 3-DoF robot arm as part of the 6-DoF arc welding robot called Robotums RA-01 developed at Centre of Materials & Minerals, Universiti Malaysia Sabah. A 3-DoF robot arm has been designed with the ability to interface with a forearm mechanism developed by Chua (2007) to form a complete 6-DoF arc-welding robot with a maximum reachable distance of 1,300mm and a handling payload of 6kg at the wrist center. As well as designing of the robot-arm mechanics and structure, and the driving system design fundamentals. The robot kinematics model has been developed to serve as the fundamental mechanics of the robot-arm system, Modified Denavit-Hartenberg frame assignment is introduced to resolve the complexity of the skeleton structure frame assignment with a final reference coordinate frame been fixed, which leads to the forward and inverse kinematics model formulation. Each joint of the designed robot arm is given a degree of freedom by attaching a joint driving system using servomotors and harmonics drive partnership. The joint driving systems are designed based on the criteria to meet acceleration and manipulation of the robotarm structures and inertia masses achieving the 6kg payload at the wrist center point. Prediction of harmonic drive safety functional life span of the shortest period of 8 years is achieved at 1<sup>st</sup> joint driving system before failure is anticipated. The robot arm 3-D virtual prototype linkage structures are designed through SolidWorks to meet the design requirement of a maximum deflection value of 0.257mm and an equivalent stiffness of 295717.5 N/mm for 6kg payload acting at the wrist center has also been achieved. The main linkage structures design involved the theoretical model, and the iteration or numerical via CAD with CAE verification has been For analyzing the theoretical dynamic behavior of the robot arm, a introduced. dynamic model of the arm has been developed based on the Lagrange approach. An ideal theoretical dynamic model, neglects on the frictional force terms are simulated in the development of inverse dynamic solutions of the joint torques. A close-to real life dynamic simulation or 3-D motion numerical analysis has also been performed through CosmosMotion CAE application tool for comparison and verification of the results with the theoretical model. The linear trajectory simulation of the GMAW robot-arm wrist center Cartesian position error range of 0.00mm to 0.35mm is achieved at 400 mm/min for standard gas metal welding operation, which permitted tolerance variation position between the arc and joint gap not to exceed more than Therefore, the designed GMAW robot-arm has successfully met the +0.5 mm. requirement of gas metal arc welding operation.



### ABSTRAK

Tesis ini mempersembahkan hasil penyelidikan dan reka bentuk sebuah robot lengan yang mempunyai tiga darjah kebebasan (3-DoF) yang merupakan sebahagian daripada robot kimpalan arka, Robotums Ra-01 yang dihasilkan daripada Pusat Bahan dan Galian, Universiti Malaysia Sabah. Robot lengan ini direka untuk pengabungkan sebuah mekanisma lengan hasil ciptaan Chua (2007) supaya sebuah robot enam darjah kebebasan dihasilkan dengan menpunyai kemampuan meliputi 1300mm jarak jangkauan dan mengangkat berat muatan sebanyak 6kg di pusat Keria-keria penvelidikan dan reka bentuk robot lengan ini adalah pergelangan. merangkumi asasi-asasi seperti robot lengan mekanik, reka bentuk struktur badan dan sistem pemacuan. Kinamatik model langsungan dan songsangan yang merupakan asasi kepada sistem mekanik robot lengan dibentuk dengan berpandukan konsep Denavit-Hartenberg dalam penetapan kedudukan koordinat rangka yang telah diubahsuai dengan kesesuaian rekabentuk rangka robot lengan. Setiap sendi atau penyambungan dikurniakan satu darjah kebebasan dengan kehadiran sistem pemacuan yang terdiri dari gabungan motor servo dan gear harmonik dan ia direka dengan berpandukan ciri-ciri asas motor servo dan gear harmonik membolehkan struktur robot lengan dapat digerakkan dengan kelajuan yang ditetapkan dengan kehadairan berat muatan 6kg di pusat pergelangan. Setiap sistem pemacuan sendi dijangkakan mempunyai 8 tahun hayat berfungsi dengan jangkaan kerosakan awal berlaku ke atas sistem pemacuan sendi pertama. Model robot lengan dalam bentuk 3-D maya yang dihasilkan dengan penggunaan SolidWorks telah memenuhi syarat reka bentuk, di mana pembiasan maksima adalah 0.257mm bersama kekakuan kesamaan sebanyak 295717.5N/mm dengan kehadiran berat muatan 6kg di pusat pergelangan. Kelakuan robot lengan ini dikaji secara dinamik dengan pembangunan model teori dinamik yang berasaskan konsep Lagrange's mengabaikan sebarangan kuasa yang disebabkan oleh geseran disimulasikan secara songsangan model dinamik untuk pencarian tork sendi. Simulasi nyata dalam bentuk 3-D maya dilakukan untuk tujuan pemerhatian gerakan robot lengan secara kaedah berangka. Hasil penyelidikan secara kaedah berangka dan teori dibanding dan dibincangkan. Pergerakan lurus kimpalan arka dengan kelajuan 4000mm/min telah disimulasikan dan menunjukkan ketepatan (kedudukan) pusat pergelangan robot lengan adalah antara 0.00mm ke 0.35mm yang berada dalam had yang dibenarkan (+0.5mm) dalam piawaian kimpalan arka. Dengan ini, robot lengan yang dicipta telah beriava mencapai keperluan kimpalan arka.



CONTENTS

| TITLE  | PAGE                                                       | Page |
|--------|------------------------------------------------------------|------|
| TITLE  |                                                            | 10   |
| DECLA  | RATION                                                     | ii   |
| CERTI  | FICATION                                                   | Ш    |
| ACKNO  | WLEGMENT                                                   | iv   |
| ABSTR  | ACT                                                        | v    |
| ABSTR  | AK                                                         | vi   |
| CONTE  | NTS                                                        | vii  |
| LIST O | FTABLES                                                    | x    |
| LIST O | F FIGURES                                                  | xii  |
| LIST O | FABBREVIATIONS                                             | xvii |
| LIST O | F SYMBOLS                                                  | xix  |
| СНАРТ  | ER 1: INTRODUCTION                                         | 1    |
| 1.1    | INTRODUCTION                                               | 1    |
| 1.2    | MATERIAL DEPOSITION                                        | 1    |
|        | 1.2.1 Welding – Gas Metal Arc Welding (GMAW)               | 1    |
|        | 1.2.2 Towards Robotized GMAW Challenges                    | 3    |
|        | 1.2.3 GMAW Robot Industry                                  | 5    |
|        | 1.2.4 GMAW Robot Trend                                     | 7    |
| 13     | OBJECTIVE                                                  | 9    |
| 14     | DROJECT SCODE                                              | 10   |
| 15     | PROJECT METHODOLOGY                                        | 10   |
| 1.6    | THESIS ORGANIZATION                                        | 10   |
| СНАРТ  | ER 2: LITERATURE REVIEW                                    | 14   |
| 2.1    | INTRODUCTION                                               | 14   |
| 2.2    | ARTICULATED ROBOT-ARM STRUCTURE                            | 14   |
|        | 2.2.1 Articulated Robot-Arm Morphology                     | 15   |
|        | 2.2.2 Robot-Arm Structure Stiffness and Material Selection | 16   |
| 22     | ROBOT-ARM DRIVING SYSTEM                                   | 20   |
| 2.5    | 2.3.1 Joint Actuator                                       | 20   |
|        | 2.3.1 Joint Actuator                                       | 21   |
|        | 2.3.2 POWER Industries Solution                            | 24   |
|        | 2.3.3 Actuator and Power Transmission Selection            | 28   |
| 2.4    | MECHANICS OF ROBOT-ARM                                     | 31   |
|        | 2.4.1 Kinematics                                           | 32   |



|       | 2.4.2 Static Analysis                        | 36  |
|-------|----------------------------------------------|-----|
|       | 2.4.3 Dynamics                               | 37  |
| 2.5   | COMPUTER AIDED DESIGN (CAD) & COMPUTER AIDED | 41  |
|       | ENGINEERING (CAE)                            |     |
| -     | TR A. ROBOT ADM CONCEPTION DECION            | 1   |
| CHAPI | ER 3: ROBOT-ARM CONCEPTUAL DESIGN            | 45  |
| 3.1   |                                              | 45  |
| 3.2   | DESIGN PROCESS                               | 45  |
| 3.3   | CONCEPTUAL DESIGN                            | 4/  |
| 3.4   |                                              | 50  |
| 3.5   | SKELETON STRUCTURE                           | 51  |
| 3.0   | JOINT TORQUE REQUIREMENT                     | 52  |
| CHAPT | ER 4: POSITIONAL KINEMATICS ANALYSIS         | 55  |
| 4.1   | INTRODUCTION                                 | 55  |
| 4.2   | DENAVIT-HANTENBERG COORDINATE FRAME SYSTEM   | 55  |
|       | ASSIGNMENT                                   | 55  |
| 4.3   | ROBOT-ARM TRANSFORMATION MATRIX              | 57  |
| 4.4   | ROBOT-ARM LOOP-CLOSURE EQUATION              | 59  |
| 4.5   | FORWARD KINEMATICS                           | 60  |
| 4.6   | INVERSE KINEMATICS                           | 62  |
| 4.7   | SUMMARY                                      | 66  |
|       |                                              |     |
| CHAPT | ER 5: JOINT DRIVING SYSTEM DESIGN            | 67  |
| 5.1   | INTRODUCTION                                 | 67  |
| 5.2   | HARMONIC DRIVE SYSTEM                        | 67  |
| 5.3   | SERVO MOTOR                                  | 68  |
| 5.4   | DRIVING SYSTEM DESIGN                        | 68  |
| 5.5   | HARMONIC DRIVE & SERVO MOTOR SELECTION       | 71  |
|       | 5.5.1 Driving System Reduction Ratio         | 71  |
|       | 5.5.2 Harmonic Drive Selection               | 71  |
|       | 5.5.3 Servo Motor Selection                  | 77  |
|       | 5.5.4 Miter Gear Selection                   | 79  |
|       | 5.5.5 Harmonic Drive Components Life Period  | /9  |
| 5.6   | SUMMARY                                      | 80  |
| CHAPT | ER 6: STRUCTURE DESIGN & ANALYSIS            | 82  |
| 6.1   | INTRODUCTION                                 | 82  |
| 6.2   | LINKAGE STRUCTURE STIEENESS MODELING         | 82  |
| 6.3   | LINKAGE STRUCTURE DESIGN APPROACH            | 86  |
| 6.4   | MATERIAL SELECTION                           | 86  |
| 6.5   | FLBOW JOINT DESIGN                           | 87  |
| 6.6   | LOWER ARM DESIGN                             | 97  |
| 6.7   | BODY DESIGN                                  | 92  |
| 6.0   | POBOT-ARM & COMPONENTS ASSEMBLY DETAILING    | 102 |
| 0.0   | 6.8.1 Unner Arm Assembly                     | 102 |
|       | 6.8.2 Lower Arm Assembly                     | 103 |
|       | 6.8.3 Body Base Assembly                     | 104 |
| 6.0   |                                              | 100 |
| 0.9   | JOHNAN                                       | 100 |



| 1     | СНАРТ | ER 7:   | ROBOT-ARM DYNAMIC ANALYSIS                                     | 110 |
|-------|-------|---------|----------------------------------------------------------------|-----|
|       | 7.1   | INTRO   | DUCTION                                                        | 110 |
|       | 7.2   | LINKA   | GE MOMENT INERTIA                                              | 110 |
|       |       | 7.2.1   | 1 <sup>st</sup> Link (body) Moment Inertia                     | 112 |
|       |       | 7.2.2   | 2 <sup>nd</sup> Link (lower arm) Moment Inertia                | 113 |
|       |       | 7.2.3   | 3 <sup>ra</sup> Link (upper arm) Moment Inertia                | 114 |
|       |       | 7.2.4   | Linkage Center of Mass Position Vector                         | 115 |
|       | 7.3   | ROBO    | T-ARM LINKAGE VELOCITY & JACOBIAN MATRIX                       | 116 |
|       | 7.4   | KINET   | IC ENERGY                                                      | 120 |
|       |       | 7.4.1   | 1 <sup>st</sup> Link (body) Inertia Tensor                     | 121 |
|       |       | 7.4.2   | 2 <sup>nd</sup> Link (lower arm) Inertia Tensor                | 122 |
|       |       | 7.4.3   | 3 <sup>rd</sup> Link (upper arm) Inertia Tensor                | 123 |
|       | 7.5   | POTE    | NTIAL ENERGY                                                   | 126 |
|       | 7.6   | LAGRA   | ANGE'S EQUATION                                                | 127 |
|       | 1.1   | DYNA    | MIC MODEL SIMULATION                                           | 132 |
|       |       | 7.7.1   | Joints Initial Acceleration                                    | 133 |
|       |       | 1.7.2   | External Forces & Moments (6kg Payload)                        | 134 |
|       |       | 7.7.3   | Joints Handling Torque Simulation                              | 134 |
|       |       | 7.7.4   | Linear Trajectory Simulation                                   | 139 |
|       | 7.8   | SUMM    | ARY                                                            | 144 |
| (     | CHAPT | ER 8: 1 | RESULTS & DISCUSSIONS                                          | 145 |
|       | 8.1   | INTRO   | DUCTION                                                        | 145 |
|       | 8.2   | ROBO    | T-ARM KINEMATICS                                               | 145 |
|       |       | 8.2.1   | D-H Frame Verification                                         | 145 |
|       |       | 8.2.2   | Joint Space & Cartesian Space & Actuator Space<br>Relationship | 147 |
|       | 8.3   | ROBO    | T-ARM STRUCTURE DESIGN                                         | 149 |
|       |       | 8.3.1   | Robot-Arm Structure Stiffness                                  | 150 |
|       |       | 8.3.2   | Material Selection                                             | 151 |
|       |       | 8.3.3   | Workspace Analysis                                             | 153 |
|       | 8.4   | ROBO    | T-ARM DYNAMICS THROUGH VIRTUAL PROTOTYPE                       | 156 |
|       |       | SIMUL   | ATION                                                          |     |
|       |       | 8.4.1   | Dynamic Simulation Through CosmosMotion                        | 156 |
|       |       | 8.4.2   | Results Analysis                                               | 159 |
| 3.4.3 | 3     |         | Dynamic Joints Handling Torque Simulation                      | 173 |
|       | СНАРТ | ER 9: 0 | CONCLUSION & FUTURE DEVELOPMENT                                | 178 |
|       | 9.1   | INTRO   | DUCTION                                                        | 178 |
|       | 9.2   | CONC    | LUSION                                                         | 178 |
|       | 9.3   | FUTU    | RE DEVELOPMENT                                                 | 181 |
| 1     | REFER | ENCES   |                                                                | 182 |
|       | ADDEN | DICEC   |                                                                | 100 |
|       | APPEN | DICES   | A TADANI DRODUCTION AND SHIDMENT OF                            | 100 |
|       | APF   | ENDIX   | MANIPULATORS & ROBOTS BY APPLICATION AREAS                     | 100 |
|       | APP   | ENDIX   | B ELBOW JOINT DETAIL                                           | 189 |
|       | APP   | ENDIX   | C 2 <sup>ND</sup> LINK DETAIL                                  | 190 |
|       | APF   | ENDIX   | D BODY DETAIL                                                  | 191 |
|       |       |         |                                                                |     |

8



# LIST OF TABLES

|           |                                                                                                  | Page |
|-----------|--------------------------------------------------------------------------------------------------|------|
| Table 2.1 | Structural deflection due to pure bending value suggestion by Mott (1999)                        | 19   |
| Table 2.2 | List of industrial available computer aided tools                                                | 43   |
| Table 3.1 | List of low payload industrial robots                                                            | 49   |
| Table 4.1 | D-H parameters of the arc welding robot-arm                                                      | 57   |
| Table 5.1 | Required torque and maximum angular velocity of each joint                                       | 71   |
| Table 5.2 | Proposed reduction ratio for each joint driving system                                           | 71   |
| Table 5.3 | Harmonic drive SHG32-100-2UH                                                                     | 74   |
| Table 5.4 | Harmonic drive SHG50-120-2UH                                                                     | 75   |
| Table 5.5 | Harmonic drive CSF58-100-2UH                                                                     | 76   |
| Table 5.6 | Proposed Mitsubishi servo motor for each driving system                                          | 77   |
| Table 5.7 | Life span of robot-arm proposed driving systems                                                  | 80   |
| Table 5.8 | Safety functional life span of selected harmonic drive                                           | 80   |
| Table 6.1 | Linkage structures deflection distribution value                                                 | 84   |
| Table 6.2 | Data selected region for maximum deflection against structure mass                               | 95   |
| Table 6.3 | Upper arm components detail                                                                      | 103  |
| Table 6.4 | Lower arm components detail                                                                      | 105  |
| Table 6.5 | Body base components detail                                                                      | 106  |
| Table 7.1 | Joint driving systems input and output angular acceleration ( $\alpha_i$ and $\ddot{\theta_i}$ ) | 133  |
| Table 7.2 | Positions of the wrist center and joints angle configuration                                     | 139  |
| Table 8.1 | Harmonic drives positional error value                                                           | 149  |



| Table 8.2 | Dimension coefficient for material applicants                                                                                  | 152 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 8.3 | Robot-arm joint angle ranges                                                                                                   | 154 |
| Table 8.4 | Workspace boundaries for the computation of Figure 8.6                                                                         | 154 |
| Table 8.5 | Joint starting, holding and maximum handling torques for<br>each joint through CosmosMotion and theoretical base<br>simulation | 168 |
| Table 8.6 | Joint maximum handling torque of CosmosMotion and theoretical base simulation                                                  | 177 |



# LIST OF FIGURES

|            |                                                                                                                                                  | Page |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1 | Gas metal arc welding(GMAW) process                                                                                                              | 3    |
| Figure 1.2 | Statistics of Japan industrial robot business for different applications for year 2006                                                           | 6    |
| Figure 1.3 | Research methodology flow chart                                                                                                                  | 11   |
| Figure 2.1 | Articulated robot-arm kinematics arrangement                                                                                                     | 15   |
| Figure 2.2 | Articulated robot-arm morphology: (a) simple open-tree structure, (b) multiple open-tree structure, and (c) multiply-connected complex structure | 15   |
| Figure 2.3 | Cantilever structure                                                                                                                             | 17   |
| Figure 2.4 | Servo and stepper motor close loop control system                                                                                                | 23   |
| Figure 2.5 | Type of gear train                                                                                                                               | 25   |
| Figure 2.6 | Electromechanical system                                                                                                                         | 28   |
| Figure 2.7 | Example of an application duty cycle as function of time                                                                                         | 30   |
| Figure 2.8 | Flow chart of electric motor and power transmission selection process                                                                            | 31   |
| Figure 2.9 | Free body diagram of partial manipulator with forces and moments                                                                                 | 36   |
| Figure 3.1 | Top-down and bottom-up design techniques                                                                                                         | 46   |
| Figure 3.2 | GMAW robot-arm design process                                                                                                                    | 46   |
| Figure 3.3 | The designed forearm                                                                                                                             | 47   |
| Figure 3.4 | Serial mechanism structure arrangements                                                                                                          | 48   |
| Figure 3.5 | 3-DoF robot-arm linkage structure                                                                                                                | 51   |
| Figure 3.6 | Robot-arm skeleton model                                                                                                                         | 52   |
| Figure 3.7 | Robot-arm structure and location of each link center of mass                                                                                     | 52   |
| Figure 3.8 | Center of mass of 3 <sup>rd</sup> link                                                                                                           | 53   |



| Figure 3.9  | Center of mass of 2 <sup>nd</sup> and 3 <sup>rd</sup> link                   | 53 |
|-------------|------------------------------------------------------------------------------|----|
| Figure 3.10 | Center of mass of 1 <sup>st</sup> , 2 <sup>nd</sup> and 3 <sup>rd</sup> link | 54 |
| Figure 4.1  | Denavit-Hartenberg frame assignment                                          | 56 |
| Figure 4.2  | Skeleton structure of arc welding robot-arm                                  | 56 |
| Figure 4.3  | Series of robot-arm frame transformations                                    | 59 |
| Figure 4.4  | Location of robot-arm wrist center, $P(x, y, z)$                             | 60 |
| Figure 4.5  | Elbow configurations                                                         | 64 |
| Figure 4.6  | Four possible configurations for a given wrist center position               | 65 |
| Figure 4.7  | Robot-arm kinematics modeling flowchart                                      | 66 |
| Figure 5.1  | Harmonic drives working principles                                           | 68 |
| Figure 5.2  | Harmonic drive CSF and SHG series                                            | 69 |
| Figure 5.3  | Gearing reduction driving configuration                                      | 70 |
| Figure 5.4  | Robot-arm designed joint driving systems                                     | 70 |
| Figure 5.5  | CSF and SHG series $K_e$ coefficient                                         | 72 |
| Figure 5.6  | SHG and CSF housed unit efficiency                                           | 76 |
| Figure 5.7  | Robot-arm joint driving system design flowchart                              | 81 |
| Figure 6.1  | Single uniform robot-arm linkage linear deflection                           | 83 |
| Figure 6.2  | Series of spring system with structure mass is accounted                     | 85 |
| Figure 6.3  | Elbow joint covering boundaries                                              | 88 |
| Figure 6.4  | Elbow joint preliminary CAD draft design                                     | 89 |
| Figure 6.5  | A SolidWorks of the final 3-D model of elbow joint part                      | 89 |
| Figure 6.6  | Applied load and restrained points                                           | 90 |
| Figure 6.7  | Resultant displacement result                                                | 90 |
| Figure 6.8  | Stress result for elbow joint torque analysis                                | 91 |
| Figure 6.9  | Final improved model analysis result                                         | 92 |



| Figure 6.10 | Lower arm free body diagram                                                   | 93  |
|-------------|-------------------------------------------------------------------------------|-----|
| Figure 6.11 | 'I' cross section geometry parameters                                         | 93  |
| Figure 6.12 | Maximum deflection against structure mass computation result                  | 94  |
| Figure 6.13 | Shear, moment and deflection diagram for the selected data set, $t_{1}$       | 95  |
| Figure 6.14 | Lower arm 3-D solid model                                                     | 96  |
| Figure 6.15 | Lower arm meshed model with forces constraints and restraints                 | 96  |
| Figure 6.16 | Lower arm z -axis displacement result                                         | 97  |
| Figure 6.17 | Stress result for inertial and improved lower arm part model                  | 97  |
| Figure 6.18 | Body part preliminary sketch                                                  | 98  |
| Figure 6.19 | Body part 3-D solid model                                                     | 98  |
| Figure 6.20 | Meshed body part model                                                        | 99  |
| Figure 6.21 | Strength analysis results                                                     | 99  |
| Figure 6.22 | Displacement analysis results                                                 | 100 |
| Figure 6.23 | Meshed body part model torque analysis                                        | 100 |
| Figure 6.24 | Body part torque analysis results                                             | 101 |
| Figure 6.25 | Designed robot-arm layout                                                     | 102 |
| Figure 6.26 | Upper arm assembly and components design layout                               | 104 |
| Figure 6.27 | Lower arm assembly and components design layout                               | 105 |
| Figure 6.28 | Body base assembly and components design layout                               | 107 |
| Figure 6.29 | Robot-arm structure design flowchart                                          | 109 |
| Figure 7.1  | Reference frame of each linkages                                              | 111 |
| Figure 7.2  | Center of mass velocity vector of <i>i</i> -th link                           | 116 |
| Figure 7.3  | Joints handling torque versus 2 <sup>nd</sup> joint angles                    | 136 |
| Figure 7.4  | Joints handling torque as 2 <sup>nd</sup> joint is manipulated at 150°deg/sec | 137 |



| Figure 7.5  | Joints handling torque as 1 <sup>st</sup> joint is manipulated at 180°deg/sec                                                                                                                           | 138 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 7.6  | Planned linear trajectory                                                                                                                                                                               | 140 |
| Figure 7.7  | Robot-arm joints angular velocity profiles for performing the planned trajetory under series of time period (1, 2 and 4 seconds)                                                                        | 140 |
| Figure 7.8  | Robot-arm joints angular acceleration profiles for performing the planned trajetory under series of time period (1, 2 and 4 seconds)                                                                    | 141 |
| Figure 7.9  | Joints handling torque profiles versus travel time period                                                                                                                                               | 143 |
| Figure 7.10 | Robot-Arm dynamic analysis flowchart                                                                                                                                                                    | 144 |
| Figure 8.1  | D-H verification flowchart                                                                                                                                                                              | 146 |
| Figure 8.2  | Theoretical joint variables ( $\theta_1$ , $\theta_2$ and $\theta_3$ ) <sub>cal</sub> and wrist center position ( $x, y, z$ ) <sub>cal</sub> of the designed linear trajectory between position A and B | 146 |
| Figure 8.3  | Coordinate distinctive value versus position sequences                                                                                                                                                  | 147 |
| Figure 8.4  | Relationship between Actuator – Joint – Cartesian space                                                                                                                                                 | 148 |
| Figure 8.5  | Ductile iron lower arm displacement analysis result                                                                                                                                                     | 153 |
| Figure 8.6  | Upper and lower arm joint angle limits due to structure design                                                                                                                                          | 153 |
| Figure 8.7  | Designed robot-arm workspace                                                                                                                                                                            | 155 |
| Figure 8.8  | Back and front reach configuration workspace                                                                                                                                                            | 156 |
| Figure 8.9  | Mechanical constraints                                                                                                                                                                                  | 158 |
| Figure 8.10 | Joint angular acceleration versus frames for 1 second time period simulation                                                                                                                            | 159 |
| Figure 8.11 | Joint angular acceleration versus frames for 2 second time period simulation                                                                                                                            | 160 |
| Figure 8.12 | Joint angular acceleration versus frames for 4 seconds time period simulation                                                                                                                           | 161 |
| Figure 8.13 | Joint angular acceleration distinct value for 1 second time period simulation versus frames                                                                                                             | 164 |



| Figure 8.14 | Joint angular acceleration distinct value for 4 second time period simulation versus frames         | 164 |
|-------------|-----------------------------------------------------------------------------------------------------|-----|
| Figure 8.15 | Joints required handling torque versus frame for 1 second time period simulation                    | 165 |
| Figure 8.16 | Joints required handling torque versus frame for 2 seconds time period simulation                   | 166 |
| Figure 8.17 | Joints required handling torque versus frame for 4 seconds time period simulation                   | 167 |
| Figure 8.18 | $1^{ m st}$ joint ( $	heta_{ m l}$ ) angle projected versus frames result                           | 169 |
| Figure 8.19 | $2^{nd}$ joint ( $\theta_2$ ) angle projected versus frames result                                  | 170 |
| Figure 8.20 | $3^{ m rd}$ joint ( $	heta_3$ ) angle projected versus frames result                                | 170 |
| Figure 8.21 | Wrist center position error displacement for very short frame (1sec., 2sec., and 4sec.) simulations | 171 |
| Figure 8.22 | Wrist center position error for 210 seconds time-period simulation for GMAW operation               | 172 |
| Figure 8.23 | Planned linear trajectory paths                                                                     | 173 |
| Figure 8.24 | $1^{st}$ joint handling torque versus $1^{st}$ joint angle orientations                             | 174 |
| Figure 8.25 | Robot-arm behavior at initial and $\theta_1 = 150^{\circ}$ state                                    | 175 |
| Figure 8.26 | 2 <sup>nd</sup> joint handling torque versus 2 <sup>nd</sup> joint angle orientations               | 176 |
| Figure 8.27 | 3 <sup>rd</sup> joint handling torque versus 3 <sup>rd</sup> joint angle orientations               | 176 |



# LIST OF ABBREVIATIONS

- 2-D Two dimensional
- 3-D Three dimensional
- AC Alternating current
- ARM Articulated/anthropomorphic robot-arm
- CAD Computer aided design
- CAE Computer aided engineering
- CAM Computer aided manufacturing
- CIM Computer integrated manufacturing
- CNC Computer numerical control
- CSF Cup type harmonic drive
- DC Direct current
- D-H Denavit Hartenberg
- DoF Degree of freedom
- E-L Euler Lagrange's
- FEA Finite element approach
- JETRO Japan External Trade Organization
- MIG Metal inert gas welding
- mm millimeter
- m meter
- N-E Newton-Euler
- NC Numerical control
- OICA International Organization of Motor Vehicle Manufacturers
- PTP Point to point
- PAM Pneumatic artificial muscle



- RISC Reduced instruction set computer
- SCARA Selective compliance adaptive robot arm
- SHG Silk hat type harmonic drive



# LIST OF SYMBOLS

| k                | Structure stiffness                                      |
|------------------|----------------------------------------------------------|
| g                | Gravity acceleration                                     |
| n                | Gear ratio                                               |
| t                | Cross-section thickness                                  |
| С                | Correlation factor                                       |
| D                | Dimensional coefficient                                  |
| E                | Material modulus of elasticity                           |
| F                | System generalized forces causes by motion               |
| G                | Number of grounded link                                  |
| Ι                | Structure moment inertia computed about the neutral axis |
| J                | Inertia                                                  |
| L                | Structure overall length                                 |
| М                | Internal structure moment acting at $x$ distance         |
| Р                | Load                                                     |
| <u></u>          | Robot-arm joint rate                                     |
| R                | Gearing reduction                                        |
| Т                | Rotational torque                                        |
| V                | Structure volume                                         |
| K                | System kinetic energy                                    |
| L                | Lagrangaian terms                                        |
| Р                | System potential energy                                  |
| δ                | Deflection due to pure bending                           |
| $\delta_{\max}$  | Maximum deflection                                       |
| ρ                | Material density                                         |
| ν                | Velocity                                                 |
| α                | Angular acceleration                                     |
| ω                | Angular velocity                                         |
| $\varpi_{Ip}$    | Application peak speed                                   |
| $\varpi_{minax}$ | Motor maximum speed                                      |
| V                | Linear velocity of the center of mass of $i$ -th link    |



| ϖ <sub>ci</sub>             | Angular velocity of the center of mass of $i$ -th link                       |
|-----------------------------|------------------------------------------------------------------------------|
| $\alpha_i$                  | Twist angle of i-th joint                                                    |
| $\theta_i$                  | Joint angle of i-th joint                                                    |
| $\dot{\theta}_i$            | Joint rate or angular velocity of <i>i</i> -th joint                         |
| $\ddot{\Theta}_i$           | Angular acceleration of $i$ -th joint                                        |
| $\eta_{g}$                  | Power transmission unit efficiency / Efficiency rated torque of the drive    |
| $\eta_{effective}$          | Harmonic drive effective efficiency                                          |
| τ                           | Generalized forces reflected of the system                                   |
| T <sub>ext</sub>            | External torques                                                             |
| F <sub>ext</sub>            | External forces                                                              |
| $F_i$                       | Force is exerted to link <i>i</i>                                            |
| $H_{n-1}^n$                 | Transformation matrix of n coordinate frame to respect to n-1                |
|                             | coordinate frame                                                             |
| $J_I^{ci}$                  | Jacobian matrices for linear velocity of the center of mass of $i$ -th link  |
| $J_a^{cl}$                  | Jacobian matrices for angular velocity of the center of mass of $i$ -th link |
| K <sub>e</sub>              | Harmonic drive compensation coefficient                                      |
| $L_h$                       | Harmonic drive life span                                                     |
| N <sub>i</sub>              | Torque generated by force is exerted to link <i>i</i>                        |
| $R_0'$                      | Rotation matrix of $l$ -th linkage respect to base frame (0)                 |
| $S_f$                       | Safety factor                                                                |
| T <sub>RMS</sub>            | Root-mean square torque                                                      |
| $T_c$                       | Motor continuous torque rating                                               |
| $T_{lp}$                    | Application required peak torque                                             |
| $T_p$                       | Motor peak torque                                                            |
| $u_{xyz}, v_{xyz}, W_{xyz}$ | Euler angle                                                                  |
| $P_x, P_y, P_z$             | Position of the wrist center                                                 |

 $G(\theta)$  Gravitational force



| $M(\theta)\ddot{\theta}$             | Inertia tensor matrix                                    |
|--------------------------------------|----------------------------------------------------------|
| $V(\theta,\dot{\theta})\dot{\theta}$ | Coriolis and centrifugal force (velocity coupling terms) |
| DoF                                  | Degree of freedom                                        |
| a,                                   | Link length of i-th joint                                |
| $d_i$                                | Joint osset of i-th joint                                |
| k <sub>ci</sub>                      | Unit of vector of <i>i</i> -th joint axis                |
| k <sub>eq</sub>                      | Equivalent stiffness                                     |
| $m_l$                                | Mass properties of i-th link                             |
| m <sub>payload</sub>                 | Payload                                                  |
| n <sub>l</sub>                       | Number of link                                           |
| n <sub>j</sub>                       | Number of joint                                          |
| x,                                   | x-axis of i-th joint                                     |
| $y_i$                                | y-axis of i-th joint                                     |
| Z <sub>i</sub>                       | z-axis of i-th joint                                     |
|                                      |                                                          |



# CHAPTER 1

#### INTRODUCTION

### 1.1 INTRODUCTION

Implementation of robotics is the main key to modern manufacturing systems and it will continue to evolve and succeed. Automobile productions are examples of successful modern manufacturing system, which are steadily increasing year by year and in year 2006 alone the world car production is over 69 millions units (OICA, 2006). Robotics has played a great role in the automobile industries to achieve these production volumes, where almost each automobile production processes can be robotized. These facts have become an encouragement of this research project in developing a material deposition automation with emphasize on gas metal arc welding (GMAW) robot structure and driving mechanism. Through this development, it will become a motivation for Malaysia manufacturing industries to adopt local robot technology rather than a total dependent on foreign technology. The challenges, objectives, scope, methodology, and thesis organization are summarized through a review on material deposition robot.

# 1.2 MATERIAL DEPOSITION

Material deposition can be defined as a process of delivering of a matter onto a base material. The matter is a material that may be of the same or different material properties as the base material. The common material deposition process includes metal joining, surface coating, electronic circuit board printing, and other processes.

## 1.2.1 Welding – Gas Metal Arc Welding (GMAW)

Welding is a material deposition process where two materials are united together by adding a filler material. According to British Standard – Welding Terms and Symbols, welding is defined as, "An operation in which two or more parts are united, by means of heat or pressure or both, in such a way that there is continuity in the nature of the metal between these parts. A filler metal, the melting temperature of which is of the same order as that of the parent metal, may or may not be used."



Welding processes are divided into two types of welding principles, which are welding with pressure and fusion welding. Welding with pressure is a joining process by applying pressure and heat. Resistance welding, cold pressure welding, diffusion bonding, and explosion welding are examples of welding by pressure. In fusion welding, a heat source is utilized to create a weldment between two materials or filler material such as consumable electrode or wire. As the weldment solidifies, the two materials are joined together. Fusion welding includes those of arc welding, gas welding, aluminothermic welding, electron beam welding, electro-slag welding and light radiation welding (Norish, 1992).

Gas metal arc welding (GMAW) or formerly known as metal inert gas welding (MIG) is a semi or fully-automatic fusion welding process for both ferrous and nonferrous metals. The GMAW process produces a weldment between the work pieces and continuously fed the consumable filler electrode wire by heating them with an electric arc. Deoxidizers are presented in the electrode itself and also as addition to prevent oxidation from supplies of inert gas such as argon; helium; mixtures of argon and helium for non ferrous metals; and oxygen or carbon dioxide can be utilized for ferrous metals. During the process, shielding gas forms arc plasma to stabilize the arc on the metal being welded. It also shields the arc and molten weld pool from oxidization and allows smooth transfer of metal from the weld wire to the molten weld pool. Figure 1.1 illustrates the GMAW process and its elements. The applications of GMAW generally use a constant voltage and direct current polarity to the electrode. This welding process has been developed since 1950s, which utilizes a large diameter of steel electrode shielded by carbon dioxide gas. Improvement and development of welding power source technology and introduction of gas mixtures acting as shielded gas has enhanced the GMAW process such that thinner base material can be permitted for welding, providing opportunity for all-position welding, almost spatter free with excellent fusion at low heat input, and excellent weld bead appearance. In GMAW, magnitude of the current and voltage along types of shielding gas and diameter of electrode has been applied to affect the type of metal transfer mode. There are four metal transfer modes such as globular, short-circuiting, spray, and pulsed-spray each method has their own distinct properties and advantages. GMAW processes are commonly found in automotive, furniture, ship building, building construction and other industries. (Norish, 1992; Cary, 1995; Helzer, 2005).



2

#### REFERENCES

- Appleton, E., & Williams, D.J. 1987. *Industrial Robot Applications*. New York: John Willey & Sons.
- Ashby, M.F. 1999. *Materials Selection in Mechanical Design*. (2<sup>nd</sup> edition). Oxford: Butterworth-Heinemann.
- Aspragathos, N.A. & Dimitros, J.K. 1998. A Comparative Study of Three Methods for Robot Kinematics. Systems, Man and Cybernetics – Part B: Cybernetics. 28(2):135-145.
- Balafoutis, C.A. 1994. A Survey of Efficient Computational Methods for Manipulator Inverse Dynamic. *Journal of Intelligent and Robotic Systems* **9**:45-71.
- Banka, N. & Lin, Y.J. 2003. Mechanical Design for Assembly of a 4-DoF Robotic Arm Utilizing a Top-Down Concept. *Robotica.* **21**: 567-573.
- Bolmsjö, G., Olsson, M. & Cederberg, P. 2002. Robotic Arc Welding Trends and Developments for Higher Autonomy. *Industrial Robot: An International Journal.* 29(2): 98-104.
- Brown, A. 2002. Protecting Against Extreme Welding Hazards. Occupational Hazards. July. New York: Penton Media Inc.
- Cary, H.B., 1995. Arc Welding Automation. New York: Marcel Dekker, Inc.
- Cary, H.B. & Helzer, S.C. 2005. *Modern Welding Technology*. Singapore: Pearson Prentice Hall.
- Charpa, S.C. & Canale, R.P. 2002. *Numerical Methods for Engineers*. (4<sup>th</sup> edition). New York: McGraw Hill.
- Choi, H.S. & Oh, J. 2005. A New Revolute Robot Manipulator Adapting The Closed-Chain Mechanism. *Journal of Robotic Systems.* **22**(2):99-105.
- Chua, B.L., Choong, W.H., Yoong, H.P. & Yeo, K.B. 2004. Kinematics Models for 3-Axes Articulated Manipulator Control. Proceeding of 1<sup>st</sup> International Conference on Product Design & Development, Unversiti Malaysia Sabah. pp:133-138.
- Chua, B.L. 2007. *Design of Spherical Wrist and Trajectory Solution for Robotic Arc Welding Application.* School of Engineering and Information Technology. Kota Kinabalu: Universiti Malaysia Sabah
- Clark, S. & Lin, Y.J. 2007. Cad Tools Integration for Robot Kinematics Design Assurance With Case Studies On Puma Robots. *Industrial Robot: An International Journal.* **18**(3):240-248.



- Coy, J.J., Townsend, D.P. & Zaretsky, D.V. 1985. Gearing. NASA Reference Publication. 1152. Cleveland: NASA Lewis Research Center.
- Daerden, F. & Lefeber, D. 2002. Pneumatic Artificial Muscles: Actuators for Robotics and Automation. *European Journal of Mechanical and Environmental Engineering.* **47**:11-21.
- Derby, S. 1983. The Deflection and Compensation of General Purpose Robot Arm. Mechanism and Machine Theory. **18**(6):445-450.
- Duysinx, P. & Geradin, M. 2004. An Introduction to Robotics: Mechanical Aspects. Belgium: university of Liege.
- Ersu, E. & Nungesser, D. 1984. A Numerical Solution of the General Kinematic Problem. *Proceedings IEEE International Conference on Robotics and Automation.* **1**:162-168.
- Fanuc. 2003. Arc Mate iB-02 Catalogue. Japan: Fanuc Ltd.
- Gordon, L. 2005. Real Cells Go Virtual. *Welding Megazine May*. New York: Penton Media Inc.
- Groover, M.P., Weiss, M., Nagel, N.R., & Odrey, N.G. 1986. Industrial Robotics: Technology, Programming, and Application. USA: McGraw-Hill.
- Habibi, S.R., Richards, R.J. & Goldenberg, A.A. 1994. Hydraulic actuator analysis for industrial robot multivariable control. *Proceedings of the American Control Conference*. 1:1003-1007.
- Harmonic Drive. 2006a. CSD and SHD Series: Cup Type Component Sets and Housed Units. USA: Harmonic Drive Inc.
- Harmonic Drive. 2006b. SHF and SHG Series: Cup Type component Sets and Housed Units. USA: Harmonic Drive Inc.
- Harrison, H.R., & Nettleton, T. 1997. Advanced Engineering Dynamics. New York: John Wiley & Sons, Inc.
- Helzer, S.C. & Cary, H.B. 2005. *Modern Welding Technology*. Singapore: Pearson Prentice Hall.
- Hibbeler R.C. 1997. Engineering Mechanics: Statics and Dynamics. New Jersey: Prentice Hall, Inc.
- Horn, B.K.P. 1987. New Notation for Serial Kinematic Chains.
- Huang, S.J. & Wang, T.Y. 1993. Structural Dynamics Analysis of Spatial Robots With Finite Element Approach. *Computer & Structures.* **46**(4):703-716.
- Hyundai Robotics. 2007. *H006 Robotic Arm/ Manipulator*. (on-line) http://www.hyundairobotics.com Accessed on 15<sup>th</sup> March 2007.



- JARA (Japan Robot Association), 2007. January December 2006 Results. (on-line) http://www.jara.jp/e/dl/2006.pdf Accessed on 20<sup>th</sup> September 2007.
- JETRO (Japan External Trade Organization). 2006. Trends in The Japanese Robotics Industry. *Japan Economic - March*. (on-line) http://www.jetro.go.jp/en/market/trend/industrial/pdf/jem0602-2e.pdf Accessed on 20<sup>th</sup> March 2007.
- Joseph, H. & Huston, R.L. 2002. Dynamics of Mechanical Systems. New York: CRC Press.
- Kawasaki Robotics. 2006. F-Series Catalogue. USSA: Kawasaki Robotics (USA) Inc.
- Kelly, S.G. 2000. Fundamentals of Mechanical Vibrations. Singapore: McGraw-Hill.
- Kennedy, C.W. & Desai, J.P. 2003. Estimation and Modeling of The Harmonic Drive Transmission In The Mitsubishi PA-10 Robot Arm. *Intelligent Robots and Systems.* 4:3331-3336.
- KHK Co. Ltd., 2007. KHK Stock Gears 2007: All Product Guide and Technical Data. Japan: KHK Co. Ltd.
- Kissell, T.E. 2006. *Industrial Electronics*. (2<sup>nd</sup> edition). New Jersey: Prentice Hall.
- Kurfess, T.R. (ed.). 2000. Robotics and Automation Handbook. New York: CRC Press.
- Kuvin, B. F., 2006. Robotic Welding Helps Stamper Grow in Automotive. *MetalForming - April*. Ohio: Precision Metalforming Association.
- Landry, J. 2001. New Rules for Sizing Servos. *Machine Design*. July: 68. Cleveland: Penton Press.
- Lenarcic, J., Nemec, B., Stanic, U. & Oblak, P. 1988. Design of Robot Manipulators Based on Kinematic Analysis. *Robotics & Computer-Integrated Manufacturing*. 4(1/2):203-209.
- Litvin, F.L. 1997. Development of Gear Technology and Theory of Gearing. NASA Reference Publication. Cleveland: NASA Lewis Research Center.
- Man, Z. 2004. *Robotics for Computer Engineering Students*. Singapore: Prentice Hall.
- Markus, L. 1994. Application of The General Elimination Method In Robot Kinematics. *Journal of Intelligent and Robotic Systems*. **11**:109-116.



- Mavroidis, C., Lee, E. & Alam, M. 2001. A New Polynomial Solution to The Geometric Design Problem Of Spatial R-R Robot Manipulators Using The Denavit And Hartenberg Parameters. *Journal of Mechanical Design*. 123(1): 58-67.
- Mitsubishi Electric. 2005. Servo Amplifiers and Servo Motors: MELSERVO/MR2-J2-SUPER. (7<sup>th</sup> edition). Ratingen: Mitsubishi Electric Europe Inc.
- Morecki, A. & Knapczyk, J. (ed.). 1999. Basic of Robotics: Theory and Components of Manipulators and Robots. New York: Springer-Verlag Wien.
- Motoman. 2006. *Motoman September News Release*. (on-line) http://www.motoman.com/news/releases/2006/DA20robot-b.pdf Accessed on 20<sup>th</sup> September 2006.
- Motoman. 2007. Robot Series Brochure. Ohio: Motoman Corporate.
- Mott, R.L. 1999. *Machine Elements in Mechanical Design*. New Jersey: Prentice Hall, Inc.
- Mur, J.M., Teculescu, D., Pham, Q.T., Gaertner, M., Massin, N., Meyer-Bish, C., Moulin, J.J., Diebold, F., Piece, F., Meurou-Poncelet, B. & Muller, J. 1985. Lung Function and Clinical Findings In a Cross-Sectional Study of Arc Welders. International Archivers of Occupational and Environment Health. 55:1-17.
- Nielsen, J. and Roth, B. 1999. On The Kinematic Analysis of Robotic Mechanisms. *The International Journal of Robotics Research*. **18**(12):1147-1160.
- Niku, S.B. 2001. Introduction to Robotics: Analysis, Systems, & Application. New Jersey: Prentice Hall.
- Norish, J., 1992. Advanced Welding Processes. London: IOP Publishing Ltd.
- Norton, R.L. 1999. Design of Machinery: An Introduction of the Synthesis and Analysis of Mechanisms of Machines. Singapore: McGraw-Hill.
- Ohm, D.Y. 2006. Selection of Servo Motors and Drives. (on-line) http://www.drivetechinc.com/articles/pm96sizrev2.pdf Accessed on 25<sup>th</sup> September 2006.
- OICA, 2007. World Motor Vehicle Production by Country 2005-2006. International Organization of Motor Vehicle Manufacturers (OICA). (on-line) http://oica.net/wp-content/uploads/2007/06/worldprod\_country-revised.pdf Accessed on 17<sup>th</sup> November 2006.
- Otten, E. 2003. Inverse and Forward Dynamics: Models of Multi-body Systems. *Philosophical Transactions of the Royal Society B: Biological Sciences.* **358**:1493-1500.
- Otto, K., & Wood, K. 2001. Product Design: Techniques in Reverse Engineering and New Product Development. New Jersey: Prentice Hall.



- Panasonic G2 Series Catalog, 2006. *Panasonic G2 Series Catalog*. Panasonic Factory Solutions Company of America. (on-line) http://industrial.panasonic.com/www-data/pdf/ABD3000/ABD3000CE1.pdf Accessed on 4<sup>th</sup> July 2006.
- Park, I.W., Kim, J.Y., Lee, J. & Oh, J.H. 2005. Mechanical Design of Humanoid Robot Platform KHR-3. *Humanoid Robots, 2005 5<sup>th</sup> IEEE-RAS International Conference.* 321-326.
- Ridley, P.R. 1994. Robot Kinematics 1. Graphical Solution of the Inverse Equation of Closure. *Mechanism and Machine Theory.* **29**(7):1043-1052.

Robacta. 2000. Robot Torches. USA: Fronius International.

- Rooks, B., 2005. Welding and More Feature at ABB UK Open Days. Industrial Robot: An International Journal. **32**(1): 10-14.
- Roy, J. & Whitcomb, L.L. 1997. Structural Design Optimization and Comparative Analysis of a New High Performance Robot Arm via Finite Element Analysis. *Proceeding for 1997 IEEE International Conference on Robotics and Automations.* New Mexico.
- Saikkonen, M. 1996. The Kinematics and Strength of Biharmonic Gear Drives. *Mechanical Series of Acta Polytechnica Scandinavica*. **123**. Helsenki: Finish Academy of Technology.
- Sawa, T. & Kume, T. 2004. Motor Drive Technology History And Visions For The Future. 35<sup>th</sup> Annual IEEE Power Electronics Specialists Conference. 1: 2-9.
- Schilling, R.J. 1990. Fundamentals of Robotics: Analysis and Control. New Jersey: Prentice Hall, Inc.
- Selig, J.M. 2005. Geometric Fundamentals Of Robotics. New York: Springer, Inc.
- Shigley, J.E. & Maischke, C.R. 2001. *Mechanical Engineering Design*. Singapore: McGraw-Hill Book Co.
- Slatter, R. & Mackrell, G. 1994. Harmonic Drives in Tune with Robots. Industrial Robot: An International Journal. 21(3): 24-28.
- Slatter, R., & Koenen, H. Lightweight Harmonic Drive Gears for Service Robots. *Technical Paper.* Germany: Harmonic Drive Ag.
- Spong, M.W. & Vidyasacar, M. 1989. *Robot Dynamics and Control*. USA: John Wiley & Sons.
- Tsai, L.W. 1999. Robot Analysis : The Mechanics of Serial and Parallel Manipulators. USA: John Wiley & Sons, Inc.



- van Beek, B. & de Jegar, B. 1997. RRR-Robot Design: Basic Outlines, Servo Sizing and Control. *Proceedings of the 1997 IEEE International Conference on Control Applications*, Hartford, USA. 36-41.
- Walewander, J. 2001. Two for One. *April-Motion System Design*. 39-45. Cleveland: Penton Media Inc.
- Wang, Y., Hang, L. & Yang, T. 2006. Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base. Frontiers of Mechanical Engineering in China. 1(1):115-124.
- Waltmusser. 2007. *C. Walton Musser's Development of Harmonic Drive Gearing.* (on-line) http://www.waltmusser.org/HD.htm Accessed on 2<sup>nd</sup> May 2006.
- Wikipedia. 2008. IP Code. (on-line) http://www.wikipedia.org./wiki/ip\_code Accessed on 4<sup>th</sup> May 2007
- Wilson, M., 2002. The Role of Seam Tracking in Robotic Welding and Bonding. Industrial Robot: An International Journal. 29(2): 132-137.
- Yoong, H.P. 2000. *The Design of Computer Interface Card and Computer Base Control System of a 3-axis Robotic Arm.* School of Engineering and Information Technology. Kota Kinabalu: Universiti Malaysia Sabah.
- Zaluck, A. 1986. Beam Bending Compensation. USA: 4606691.
- Zhang, Y., Gruver, W.A. and Gao, F. 1999. Dynamic simplification of three degree of freedom manipulators with closed chains. *Robotics and Autonomous Systems.* 28:261-269.

