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ABSTRACT 

This experiment was conducted to study the development of sensory organs and the 

swimming behavior shown by Patin (Pangasius hypopthalmus) larvae and Asian Seabass 

(Lates calcarifers) larvae. Fish show positive rheotactic swimming behavior when they 

swim against water flow. Optomotor reaction is the ability of fish to response to pattern of 

stimulation moving over the eyes. All of the larvae used in this experiment were hatched 

in UMS hatchery. Swimming pattern, rheotactic behavior, optomotor reaction were 

observed both in larvae rearing tank and in experimental tanks. Histological observation 

was carried out to determine the morphology of eye and free neuromasts in both larvae. 

Patin larvae show clear rheotactic swimming behavior while Seabass show clear 

optomotor reaction during early larvae stages. Histology observation reveals that Seabass 

have well developed eyes during early larval stages. Contradictory, Patin larvae have 

smaller eyes; bigger eye indicates that it contained more visual cells which can improve 

the acuity and sensitivity of eye. Under microscopic observation, Seabass larvae have 

long cupulae while Patin larvae have somewhat short and more rounded cupulae. The 

presence of free neuromasts and the size of cupulae greatly determine the sensitivity of 

mechanoreception in fish. Broken, deformed cupulae will affect the fish swimming ability. 

Therefore, it is advisable not to transfer fish during early larvae stages. 
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ABSTRAK 

Experiment ini dijalankan untuk mengenalpasti perkembangan organ deria serta cara 

berenang yang ditunjukkan oleh benih ikan patin (Pangasius hypopthalmus) dan ikan 

siakap (Lates calcarifer). Ikan menunjukan reaksi "rheotactic" apabila mereka berenang 

melawan aliran arus. Reaksi optomotor merujuk kepada kebolehan ikan untuk bertindak 

balas terhadap stimulasi yang bergerak merentasi mata mereka. Semua benih ikan yang 

digunakan dalam experiment ini diperoleh dari hatchery VMS. Corak berenang, 

kecenderungan ikan melawan aliran arus serta reaksi optomotor diperhatikan dalam 

tangki benih ikan serta dalam tangki experiment. Pemerhatian histologi dijalankan untuk 

menentukan morfologi mata serta Neuromasts bebas dalam kedua-dua benih ikan. Ikan 

patin mempamerkan kecenderuanagn melawan aliran arus dengan jelas manakala Ikan 

siakap menunjukan reaksi optomotor yang jelas pada awal perkembangan larvae. 

Pemerhatian histologi menunjukkan bahawa ikan siakap mempunyai mata yang 

berkembang dengan baik. Berlainan pula dengan ikan siakap, ikan patin mempunyai mata 

yang kecil; mata yang besar menunjukkan bahawa ia mengandungi lebih banyak sel yang 

dapat menambahkan ketajaman serta kepekaan penglihatan. Di bawah pemerhatian 

rnikroskop, benih ikan siakap mempunyai cupulae yang panjang manakala ikan patin 

mempunyai cupulae yang lebih bulat dan pendek. Kehadiran neuromast bebas serta saiz 

cupulae mempengaruhi kepekaan "mechanoreception" ikan. Cupulae yang putus serta 

cacat akan menjejaskan keupayaan berenang dalam ikan. Dengan ini, adalah dinasihati 

supaya tidak memindahkan benih ikan pada awal perkembangan larvae. 
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CHAPTERl 

INTRODUCTION 

1.1 Experiment Introduction: 

Human have five types of sensory system comprising of smell, sight, taste, hearing as 

well as touch. Fish also have such sensory system in helping them in body coordination as 

well as fmding food. 

Larval rearing is the most difficult part in an aquaculture system as early mortality 

rate is very high. The main factors that contribute to the high mortality rate will be 

nutrition deficiency resulting from poor feeding as well as predatory behavior among 

larval fish. Larval fish utilized their entire sensory system in helping them in feeding and 

locomotion; thus, they can swim towards food and away from predator. 

Successful farming depends on understanding the behavior of fish, especially 

during larval stages when technical difficulties often results in high mortality in the 

hatchery. In order to fully understand the fish, we need to study their morphological as 

well as physical changes. 
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The development of sensory organ greatly related to the changes of behavior in 

larval fish. Larval fish depend on their behavioral capabilities to survive in the wild, 

particularly on their abilities to locate and capture prey as well as to avoid predators. 

(Cobcroft and Pankhurst, 2003). The observation and examination on the development of 

sensory organ in larval fish and the correlation between the developments with changes of 

behavioral capabilities provides insight into the ecology of larval fish in the wild. 

(Cobcroft and Pankhurst, 2003). Such observation and examination enables condition 

suited to the development of sensory function be extracted and used for larval culture. 

Fish spend their life time in water, thus it is in our interest to study the swimming 

behavior of fish and the correlation between their behaviors with their daily activities. 

This study is conducted to find the possible relationship between development changes in 

sensory organs and swimming behavior in larval fish. 

1.2 Targeted Species of Larval Fish 

Two species were targeted in this experiment. They were Patin (Pangasius 

hypophthalamus) and Asian Seabass (lates calcarifer) larvae. 
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1.2.1 Patin (Pangasius hypophthalmus) 

Patin (Pangasius hypophthalmus) is a freshwater fish. It is found in tropical water mainly 

in Thailand, Laos, Cambodia, Vietnam and Malaysia. This species have many other 

common names such as PIa Sawai, Sutchi Catfish, Iridescent Shark and River catfish. It is 

an active swimmer and dwells in the middle part of water bodies. Patin has a big mouth 

and an elongated body that resembles the body of a shark. The body is silver to blue with 

silver iridescence and they have a deeply forked tail. They are omnivorous fish. In 

aquaculture industry, they are fed with pellets or kitchen waste. They have special 

arborescent organ that can let them get oxygen directly from the air thus enables them to 

survive in low DO water. 

Photo 1.1: Patin (Pangasius hypophthalmus) brood fish in VMS hatchery. 
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This species is used in this experiment is because it can be mass produced and 

they are omnivorous species whereby they can consume a variety range of feed given to 

them. Due to its abilities to survive in low DO water and have a high growth rate, it has 

gain popularities among aquaculturist. Unfortunately, problems such as cannibalism and 

mass mortality occur in early larval stages, therefore it is in our interest to study their 

behavior and have a better understanding on the larval fish. 

1.2.2 Asian Sea bass (Lates calcarifer) 

Asian Seabass (Lates calcarifer) is a euryhaline species. It can survive in marine as well 

as freshwater. It has a very extensive range in tropical and semi-tropical areas of the Indo­

Pacific: eastern edge of the Persian Gulf to China, Taiwan and southern Japan, southward 

to southern Papua New Guinea and northern Australia. Another name for Asian Seabass 

is Barramundi. Locally in Malaysia, it is known as Siakap. 

Asian Seabass is characterised by its pointed head, concave forehead, large jaw 

extending behind the eye and rounded caudal fin. It has a first dorsal fin with seven or 

eight strong spines and a second soft-rayed dorsal fin of ten or eleven rays. Adult Asian 

Seabass have blue to green-grey color at their back, silvery on the sides, and white color 

below their body. Juveniles are mottled brown with a distinct white stripe from the dorsal 

fm to the snout (Bamabe, 1995) 
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Photo 1.2 Asian Seabass (lates calcarifers) brood fish 

The species is sequentially hermaphroditic, most of the larval attained maturity as 

males and transform into female after at least one spawning season; most of the larger 

specimens are therefore female. Small fish are almost exclusively male with the 

percentage of females increasing with overall length (Allan & Stickney, 2000). In the 

wild, males and females migrate into estuaries to breed, and then return to their original 

river systems. Asian Seabass is popular among culturist due to its ability to withstand 

disease and have a high growth rate. 
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1.3 Location of Experiment 

The experiment was conducted in hatchery of Borneo Marine Research Institute (BMRI), 

University Malaysia Sabah (VMS). 

1.4 Objectives 

The main purposes ofthis study are: 

1. To observe the development of sensory organ in larval fish histological and 

morphologically. 

2. To study the changes of swimming behavior III larval fish, related to the 

development of sensory organ. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Sensory Organs 

Aquatic organisms have evolved and developed wide variety of sensory organs that 

enable them to respond towards environmental changes in their vicinity through their 

lateral line and vision, or from further distance by hearing and chemical sensing (Chiu 

and Chang, 2003) Therefore, animals receive information through their well developed 

sensory organ and that sensory information will reach the central nervous system through 

the processes of stimulation, transduction, transmission and interpretation. 

The role of sensory organ in larval fish is very important to ensure the survival 

abilities of the larval fish. This study will test mainly the eyes and lateral line of targeted 

species as both sensory organ plays pretentious role during early larval stages. 
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2.1.1 Eyes 

How the visual environment affects fish abilities to survive in the wild ultimately depends 

on the anatomy and physiology of the eyes (Evans, 2004). The eyes of fish are designed 

in such a ways that light can enters almost from every direction either from above, below, 

forward or behind (Myberg and Fuiman, 2002). The major optical components in fish 

eyes consist of the cornea, lens, and retina. Light enters the fish eyes and focused on the 

retina. Retina responds to the presence of light and signals it to the brain through the 

optic nerve (Tomita, 1971). Different species have different eyes structure. Carnivorous 

species have larger eyes compared to herbivores species as they rely on visual system in 

prey location, while other species like blind cave fish (Astyanax fasciatus mexicanus) 

don't have eyes and Four-eyes fish (AnabZeps anabZeps) have eyes divided into two parts 

that enable them to see below and above the water surface at the same time (pankhurst 

and Eager, 1996). 

The development of eyes also plays important role in fish optomotor reaction 

(OMR). Experiment done on Milkfish (Chanos chanos) shows that OMR in Milkfish 

undergoes major change through metamorphic stage, and become strong and almost 

perfect in juveniles. (Kawamura and Hara, 1980). 
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2.1.2 Lateral Line 

Motions in water provide numbers of sensory information that can be used by aquatic 

animals for orientation as well as communication. Motions in water are generated by 

animate sources such as prey or predator movement and by inanimate sources such as 

water current, wind and changes in temperature (Mogdans et al., 2004). To detect and 

interpret those motions in water, aquatic animals have evolved highly sophisticated 

hydrodynamic receptor systems. The hydrodynamic receptor mention above will be the 

mechanosensory lateral line (Mogdans et al., 2004). 

In fish, lateral line is a series of pores containing nerve endings that run down both 

sides of the body. Free neuromasts are distributed throughout the surface of the head and 

along the lateral line and they are considered as part of the lateral line. Each neuromast is 

a mechanosensory organ that is sensitive to low frequency (1 ~200Hz) vibrations 

(Moorman, 2001). Inputs from these nerves are used primarily for food localization, 

navigation, schooling behavior, and finally predator avoidance (Moorman, 2001). 

Two types of neuromasts can be distinguished. The first one will be superficial 

neuromasts which occur freestanding on the skin, pits, or on skin. The second will be the 

canal neuromasts which are located in sub-epidermal canals that are in contact with the 

water through canal pores (Mogdans et a.l, 2004). The shape of the neuromasts is in 

circular or elliptical form with diameters ranging between less than 100 !-1m up to 600 \.1m 
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