
PRE-PROCESSING STRATEGIES FOR SKIN 
DETECTION USING MLP 

CHELSIA AMY DOUKIM 

THESIS SUBMITTED IN FULFILLMENT FOR 
THE DEGREE OF MASTER OF ENGINEERING 

SCHOOL OF ENGINEERING AND 
INFORMATION TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH 
2011 

UNIVERSITI MALAYSIA SABAH 



UNIVERSITI MALAYSIA SABAH 

BORANG PENGESAHAN STATUS TESIS@ 

PUMS99: 1 

JUDUL: PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP 

IJAZAH: MASTER OF ENGINEERING (ARTIFICIAL INTELLIGENCE) 

SAYA CHELSIA AMY DOUKIM SESI PENGAJIAN: 2010/2011 

mengaku membenarkan tesis (LPSM/ Sarjana/ Doktor Falsafah) ini disimpan di 
Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti 
berikut: -

1. Tesis adalah hakmilik Universiti Malaysia Sabah . 
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk 

tujuan pengajian sahaja. 
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan 

pertukaran antara institusi pengajian tinggi. 
4. Sila tandakan (/) 

D SULIT 

D 
o 

TERHAD 

TIDAK TERHAD 

(Mengandungi maklumat yang berdarjah 
keselamatan atau Kepentingan Malaysia 
seperti yang termaktub di dalam AKTA 
RAHSIA RASMI 1972) 
(Mengandungi maklumat TERHAD yang 
telah ditentukan oleh organisasi/badan di 
mana penyelidikan dijalankan) 

Disahkan Oleh 

(TANDATANGAN PENULIS) 
Alamat Tetap: 

(TANDATANGAN PUSTAKAWAN) 

U3-1, University Apartment 1, 
Kota Kinabalu, Sabah. Dr. JAMAL DARGHAM 

Nama Penyelia 

Tarikh: Tarikh: ___ ___ _ 

CATATAN:- * Potong mana yang tidak berkenaan. 
**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada 
pihak berkuasa/organisasi berkenaan dengan menyatakan sekali 
sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan 
TERHAD. 
@Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan 
Sarjana secara penyelidikan atau disertai bagi pengajian secara kerja 
kursus dan Laporan Muda (LPSM). 

UMS 
UNIVERSITI MALAYSIA SABAH 



DECLARATION 

I hereby declare that the material in this thesis is my own except for quotations, 
excerpts, equations, summaries and references, which have been dully 
acknowledged. 

29 NOVEMBER 2010 

CHELSIA AMY DOUKIM 
PK20068608 

UMS 
UNIVERSITI MALAYSIA SABAH 



NAME 

MATRIC NO. 

TITLE 

DEGREE 

VIVA DATE 

1. SUPERVISOR 

CERTIFICATION 

CHELSIA AMY DOUKIM 

PK20068608 

PRE-PROCESSING STRATEGIES FOR SKIN 
DETECTION USING MLP 

MASTER OF ENGINEERING 
(ARTIFICIAL INTELLIGENCE) 

29 NOVEMBER 2010 

DECLARED BY 

Dr. Jamal Ahmad Dargham 

2. CO-SUPERVISOR 

Assoc. Prof. Dr. Ali Chekima 

ii 

UMS 
UNIVERSITI MALAYSIA SABAH 



ACKNOWLEDGEMENT 

First and foremost, thanks to God for giving me the strength to complete this thesis. 

I would like to acknowledge and extend my heartfelt gratitude to my 
supervisor, Dr. Jamal Dargham of the School of Engineering and Information 
Technology, Universiti Malaysia Sabah for his vital advice and encouragement 
throughout the past few years. I would also like to thank him for providing the 
necessary thrust upon completion of this research and publish this thesis. 

I wish to express my special sense of gratitude to my co-supervisor 
Associate Professor Dr. Ali Chekima of the School of Engineering and Information 
Technology, Universiti Malaysia Sabah for his constant advices and motivation. 

A trillion thanks to my family especially my parents, for their unconditional 
love, patience, encouragement and understanding, and of course for being the 
greatest financial sponsorship. Thanks to my siblings and cousins for their supports 
and constant amusement. 

Thanks to Pn. Victoria Asoi of PGA-SKTM for her continuous assistance. 
Thanks to my fellow scholars and undergraduates in the Computer Engineering 
Program. 

Finally, thanks to my dear friends for their encouragement and words of 
wisdom. 

Chelsia Amy Doukim 
29 NOVEMBER 2010 

iii 

UMS 
UNIVERSITI MALAYSIA SABAH 



ABSTRACT 

PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP 

Skin detection is an important preliminary step in a wide range of image processing 
applications such as face detection, person identification, gesture analysis and 
access control. Several techniques have been used for skin detection. In this thesis, 
the multilayer perceptron (MLP) neural network and histogram thresholding 
techniques were used. Recent studies have shown that combining skin features 
and/or skin classifiers can further improve the performance of the skin detection 
system. Thus, the main objective of this research is to evaluate the effect of several 
combination strategies on the performance of a skin detection system based on the 
MLP. To achieve this goal, first the histogram thresholding technique was used to 
select skin features (chrominance component in a given colour space) that give the 
highest correct skin detection. These features will be used as inputs to the MLP 
classifiers. A modified Growing algorithm for finding the number of neurons in the 
hidden layer of a neural network was also developed it was able to reduce the 
computational time compared to the conventional Growing algorithm. The 
combination strategies were done by combining the skin features as well as the 
skin classifiers. Three skin features (chrominance component from the selected 
colour space) that gave the highest correct skin detection on a single input MLP 
classifier were used for these strategies. The strategy of combining skin features or 
inputs was done using two and three skin features. For combining skin classifiers 
strategy, several combining rules such as binary operators AND and OR were used 
to combine two and three classifiers, while combining rules namely Voting, Sum of 
Weights and New Neural Network were used to combine three classifiers. The Sum 
of Weights and New Neural Network were the proposed combining rules in this 
thesis. In order to evaluate the performances of the skin detection systems, the 
images from Compaq database were used. The strategy of combining two skin 
features Cb/Cr gave the best performance for combining skin feature strategy with 
3.01 % more correct detection compared with the best performance given by a 
single input MLP classifier given by Cb-Cr• The strategy of combining three 
classifiers using the Sum of Weights gave the best performance for its combining 
strategy with an improvement of 4.38% more correct detection compared to the 
best single input MLP classifier given by Cb-Cr• The Sum of Weights strategy also 
gave 1.37% more correct detection than the best combining skin feature strategy. 
The other proposed combining strategy called New Neural Network has managed to 
achieve 82.21% of correct detection. The best performance results obtained in this 
thesis were considerably good considering the unconstrained nature of the images 
from the Compaq database. 
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ABSTRAK 

Sistem pengesanan kulit merupakan satu proses utama yang penting dalam aplikasi 
pemprosesan imej seperti sistem pengesanan wajah pengenalan dir~ penganalisis 
isyarat dan kawalan akses. Beberapa teknik pengesanan kulit telah digunakan, 
namun demikian rangkaian neural jenis ''multJ1ayer percept ron " (MLP) dan kaedah 
histogram dengan teknik "threshold" telah digunakan dalam tesis ini. Sejak 
kebelakangan in~ kajian melaporkan bahawa strategi penggabungan seperti 
menggabungkan sifat kulit atau sistem pengesanan kulit yang berbeza berupaya 
meningkatkan keberkesanan sesuatu sistem pengesanan kulit. Oleh yang demikian, 
objektif utama kajian ini adalah untuk mengkaji keberkesanan beberapa strategi 
penggabungan berasaskan rangkaian neural jems MLP. Kaedah histogram dengan 
teknik "threshold" telah digunakan untuk menentukan sifat kulit (komponen 
"chrominance" dalam sistem warna yang diberikan) yang memberikan peratusan 
tertinggi untuk pengesanan kulit yang tepat. Sifat kulit tersebut akan digunakan 
sebagai input kepada sistem pengesanan kulit berasaskan MLP. Satu modifikasi 
algoritma yang berasaskan algoritma "Growing" untuk menentukan bilangan 
neuron dalam laplsan tersembunyi "hidden layer" rangkaian neural turut 
diperkenalkan dan ianya berkesan terutamanya dalam konteks penjimatan masa 
berbanding algoritma yang lazim digunakan iaitu algoritma "Growing'~ Dalam kajian 
in~ strategi penggabungan merangkumi strategi menggabungkan sifat kulit dan 
sistem pengesanan kulit yang berbeza. Tiga sifat kulit (komponen "chrominance" 
daripada sistem warna yang diptlih) yang memberikan keputusan terbaik dalam 
sistem pengesan kulttnya dipHih untuk strategi penggabungan yang dicadangkan. 
Strategi menggabungkan slfat kulit dtlakukan dengan menggabungkan dua dan tiga 
sifat kulit. Manakala untuk strategi menggabungkan slstem pengesanan kulit, 
operator AND dan OR digunakan untuk menggabungkan dua dan tiga sistem 
pengesan kulit, sementara penggabung "Voting'; ''Sum of Weights" dan ''New 
Neural Network" digunakan untuk menggabungkan tiga sistem pengesan kulit. 
Strategi ''Sum of Weights" dan "New Neural Network" adalah dua strategi 
penggabungan yang baru dicadangkan dalam tesis ini. Pangkalan data imej yang 
dikenali sebagai "Compaq database" telah digunakan untuk menilai kecekapan 
sistem pengesan kulit yang dicadangkan. Untuk strategi menggabungkan sifat kulit, 
penggabungan dua slfat kulit (CtIC, & Cr) memberikan peratusan pengesanan kulit 
tepat yang tertinggi iaitu 82.61% dengan peningkatan sebanyak 3.01% leblh 
pengesanan kulit berbanding sistem pengesanan kulit terbaik yang dlbenkan oleh 
Cb-Cr untuk sistem pengesan kullt yang hanya menggunakan satu slfat kulit. 
Manakala, strategi menggabungkan sistem pengesan kulit menggunakan 
penggabung ''Sum of Weights" membenkan prestasi terbaik, iaitu 83.98% dengan 
peningkatan sebanyak 4.38% lebih pengesanan kulit berbanding slstem pengesan 
kulit Cb-c,. Strategi tersebut juga membenkan 1.37% lebih pengesanan kulit 
berbanding strategi menggabungkan dua sifat kulit Strategi baru ''New Neural 
Network" berupaya mengesan 82.21 % kulit dengan tepat. HasH yang diperolehi 
dalam tesis ini boleh dlkatakan amat memberangsangkan memandangkan sifat­
sifat gambar yang sukar dlklasifikasikan daripada "Compaq database'~ 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Skin Detection 

Skin detection can be defined as the decision whether a pixel belongs to a skin 

region or a non-skin region based on that pixel colour value. Albiol et al. (2001) 

defined skin detection as the process of selecting which pixels of a given colour 

image corresponds to human skin. Skin detection is often used as the first step for 

subsequent feature extraction in a wide range of image processing applications 

such as face detection and recognition, face tracking, content-based image filtering, 

gesture analysis and person identification. Skin detection techniques can be 

classified into two categories namely pixel-based methods and region-based 

methods. Pixel-based methods classify each pixel as skin or non-skin individually 

based on human skin colour. Most researchers have used pixel-based methods 

compared to the region-based methods because skin colour information can be 

used for detecting human skin in various computer vision applications since skin 

colour allows high processing speed due to its low-level processing and is highly 

robust against rotations, scaling and partial occlusions. 

1.2 Challenges of Skin Detection 

Skin detection using the skin colour is considered a challenging task due to the 

sensitivity of skin appearance in images to various factors. Kakumanu et al. (2007) 

have identified several factors, which are: 

Illumination: A change in the lighting condition produces a change in the 

apparent colour of the skin in the image. 

Camera characteristics: Even under the same lighting conditions, the skin colour 

distribution for the same person differs from one camera to another depending on 

the camera sensor characteristics. 
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Ethnicity: Skin colour varies from person to another person belonging to different 

ethnic group and from persons across different regions. 

Individual characteristics: An individual characteristic such as age, sex and 

body parts also affect the skin colour appearance. 

Other factors: Different factors such as subject appearance (make-up, hairstyle 

and glasses), background colours, shadows and motion also influence the 

appearance of the skin colour. 

1.3 State of the Art in Skin Detection 

Phung et al. (2001) categorized the techniques used for skin detection according to 

the way the skin colour distribution is modelled into parametric, non-parametric 

and semi-parametric. The example of a parametric model is Gaussian classifier. 

Gaussian classifier is a classifier based on normal distribution. In probability theory, 

the normal (or Gaussian) distribution is a continuous probability distribution that is 

often used as a first approximation to describe real-valued random variables that 

tend to cluster around a single mean value. It has the ability to generalize data well 

even with a small size of training data and it requires small storage space. 

However, parametric modelling techniques are affected by the colour space 

representation and by the amount and the quality of the training data available. 

The non-parametric methods such as histogram-based methods are not affected by 

the choice of colour space and it is also fast in training and is independent of the 

shape of the skin distributions (Kakumanu et aI., 2007). Nevertheless, due to its 

incapability to interpolate data, this method requires a very large training dataset in 

order to obtain a good classification rate. An example of semi-parametric model is 

the Multilayer Perceptron (MLP) neural network. Multilayer Perceptron is an 

example of an artificial neural network that is used extensively for the solution of a 

number of different problems, including pattern recognition and interpolation. The 

Multilayer Perceptron is able to learn complex non-linear input-output relationships 

as well as to generalize to any given data. However, the performance of the 

network is dependent on the network properties such as the number of hidden 

layers, the number of neurons in the hidden layer and the learning rates. Despite 
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