PULLOUT CAPACITY OF VERTICAL GROUND ANCHOR IN HOMOGENEOUS SAND

MOHD RAFE BIN ABDUL MAJID

PERPUSTAKAAN UMIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2011

PUMS99:1

UNIVERSITI MALAYSIA SABAH

JDUL:_	Pu.	LLOUT	CAPA	CITY	OF	VERT	ICAL	_
280	UND	ANCHO	K IN	HON	OGE	NEONS	SAND	_
AZAH:_	SAF	JANA	SAINS	s ke;	Juru	TERAAN	MAWA	
AYA P	NOHD	RAFE (HUR	BIN AB	DW MA	stip s	ESI PENGAJI	AN:	
engaku n alaysia S	nembenark abah deng	can tesis (LP) an syarat-sya	SM/Sarjana/ arat kegunaa	Doktor Falsa n seperti ber	fah) ini di ikut:-	simpan di Per	pustakaan Univer	sîti
			0			1041.		1
1. 7 2. P s	esis adala erpustaka: ahaja.	h hakmilik U an Universiti	Iniversiti Ma Malaysia Sa	laysia Sabah abah dibenar	kan memb	ouat salinan un	tuk tujuan pengaj	ian
3. P 4. S	erpustaka engajian t ila tandak	an dibenarka inggi. an (/)	n membuat s	alinan tesis	ini sebaga	i bahan pertuk	aran antara institu	itsi
	SUL	IT		(Mengand Kepenting AKTA RA	ungi makl an Malay AHSIA RA	umat yang ber sia seperti yan ASMI 1972)	darjah keselamata g termaktub di da	an at Iam
_		dirub		(Mengandı oleh organ	mgi makl isasi/bada	umat TERHAJ an di mana per	D yang telah diten nyelidikan dijalanl	ntuka kan)
L		AK TERHA	D			Disahlan	deh .	
6	ih	-/	/			R	Jyn .	
(TAND	ATANGA	N PENULIS) .		(TA	NDATANOA	NPUSTAKAWA	N)
amat Teta	ap: No.	479, 71	n. Kun	maa u				
yes m	tani,	Ke Lad	25,	7-4	-		Nama Penyelia	-
ikh:	Lafie	0 (2011			Tarik	h:		
TATAN	:- *Potony **Jika te /organ dikela @Tesis penye	g yang tidak sis ini SULI isasi berkena skan sebagai dimaksudkar lidikan atau d	berkenaan. T atau TERH aan dengan n SULIT dan 1 sebagai tes disertai bagi	IAD, sila lan nenyatakan s TERHAD. is bagi Ijazah pengajian se	npirkan su ekali seba Doktor I cara kerja	urat daripada p Ib dan tempoh Falsafah dan S kursus dan La	ihak berkuasa tesis ini perlu arjana secara uporan Projek Sarj	jana

DECLARATION

I hereby declare that the work in this dissertation is my own except for quotations and summaries which I have duly acknowledged.

3

14 April 2011

Mohd Rafe Bin Abdul Majid PS05-008-010

CERTIFICATION

NAME	:	MOHD RAFE BIN ABDUL MAJID
MATRIC NO.	:	PS05-008-010
TITLE	:	PULLOUT CAPACITY OF VERTICAL GROUND ANCHOR IN HOMOGENEOUS SAND
DEGREE	:	MASTER OF SCIENCE (CIVIL ENGINEERING)
VIVA DATE	:	14 APRIL 2011

DECLARED BY

1. SUPERVISOR

Signature P 1

Prof. Dr. NSVK. Rao

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor Prof. Dr. Ideris Zakaria for his invaluable guidance, help, support and encouragement and above all patience throughout my research. Also my thanks go to Prof. Dr. NSVK Rao as a co-supervisor has also contributed towards the completion of this thesis. I would also like to thank the SKTM for providing the research facilities and to all the technical staff in Laboratory of Geotechnical and Mechanical for supporting in laboratory. Nevertheless, I would love to express my grateful to my family and all my friends for their support and encouragement during the period of study.

Mohd Rafe Bin Abdul Majid 14 April 2011

ABSTRACT

PULLOUT CAPACITY OF VERTICAL GROUND ANCHOR IN HOMOGENEOUS SAND

Vertical ground anchors are commonly used in foundation systems for structures requiring pullout resistance such as transmission towers, structures requiring lateral resistance, such as sheet pile walls. The work described in this research was primarily concerned with the pullout capacity of a vertical ground anchor embedded in dry homogeneous sand. One-laboratory model of anchor test apparatus is fabricated, with dry sand as a medium in sand box to form the homogeneous sand bed. Three models of circular anchors namely 25, 50 and 75 mm diameter and three states of homogeneous sand bed with different unit weights i.e., 15.89, 16.29 and 17.13 kN/m³, where the relative densities are 29%, 37% and 53% respectively were used in this research. The range of depth/ diameter (D/B) ratios are from 1 to 24 in order to cover shallow and deep anchors with the anchors being subjected to vertical loads under displacement control. A delineation technique is used to define the general failure surface of anchor in the soil mass during pullout. From the test, results show that the behavior and general failure surface of vertical ground anchor in dry homogeneous sand are similar to those reported by previous studies. The predicted formulae of pullout capacity for shallow and deep anchors in dry homogeneous sand are developed using semi-empirical method i.e., prediction of failure surface from pullout test and analytical method. From the comparison, results show that the predicted formula in similar trend with previous studies and experimental test. Overall, the study provides insights about pullout capacity of vertical ground anchor in homogeneous sand. At end of the research finding, suggestions are given for the further works in future.

Keywords: Vertical Pullout capacity, Vertical Ground Anchor, Homogeneous sand, Failure surface

ABSTRAK

Penambat bumi tegak kebiasaannya digunakan sebagai sistem asas untuk struktur yang memerlukan rintangan tarik-keluar seperti menara penghantaran, struktur yang memerlukan rintangan sisi seperti tembok cerucuk keping. Keria yang diterangkan dalam kajian ini menitikberatkan terutamanya berkenaan keupayaan tarik-keluar penambat bumi tegak yang terbenam di dalam pasir homogen. Satu model makmal ujian penambat bumi dibuat, dengan pasir kering digunakan sebagai bahantara dalam kotak pasir untuk membentuk lapisan pasir homogen. Tiga model penambat berbentuk bulat digunakan adalah bersaiz 25, 50 dan 75 mm diameter. Tiga keadaan pasir homogen dengan berat unit berbeza seperti 15.89, 16.29 dan 17.13 kN/m³, dimana ketumpatan nisbi masing-masing adalah 29%, 37% dan 53% digunakan dalam kajian ini. Julat kedalaman/diameter (D/B) dengan nisbah dari 1 sehingga 24 adalah untuk meliputi penambat cetek dan dalam dengan setiap penambat dikenakan beban tegak dibawah kawalan anjakan. Kaedah penyahlelurusan digunakan untuk mengenal pasti bentuk kegagalan permukaan dalam jisim tanah semasa tarik-keluar. Daripada ujian, keputusan menunjukkan tingkah laku dan kegagalan am permukaan penambat bumi tegak dalam pasir kering homogen adalah sama sebagaimana yang dilaporkan oleh kajian terdahulu. Formula pernyataan keupayaan tarik-keluar untuk penambat cetek dan dalam bagi pasir kering homogen dibentuk dengan menggunakan kaedah semi-empirical iaitu ramalan dari kaedah kegagalan permukaan daripada ujian keupayaan tarik-keluar serta kaedah matematik. Daripada perbandingan, keputusan menunjukkan bahawa formula pernyataan keupayaan tarik-keluar adalah selari dengan kajian terdahulu dan ujian makmal . Secara keseluruhannya, kajian ini memberi kefahaman tentang keupayaan tarik-keluar penambat bumi tegak di dalam pasir homogen. Di akhir penemuan kajian, saranan diberi untuk kerja-kerja selanjutnya untuk masa hadapan.

TABLE OF CONTENTS

	Page
TITLE	1
DECLARATION	li
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xvi
LIST OF APPENDIX	xviii
CHAPTER 1: INTRODUCTION	

1.1 Background 1.2 Problem Statement 1.3 Objective of Research 1.4 Scope of Work 1.5 Result Expectations

CHAPTER 2: LITERATURE REVIEW

2.1	Introdu	uction	7
2.2	Compo	nent of Vertical Ground Anchor	7
	2.2.1	The Anchor Head	7
	2.2.2	The Anchor Shaft	8
	2.2.3	The Anchor Plate	8
2.3	Types	of Vertical Ground Anchor	8
	2.3.1	Dead-weight Anchors	9
	2.3.2	Plate (Spread) Anchors	9
	2.3.3	Under-reamed Anchors	9
	2.3.4	Helix Anchors	9
2.4	Functio	on of Vertical Ground Anchor	9
2.5	Previou	us Research of Vertical Ground Anchor in Sand	10
	2.5.1	Method to Predict the Behaviours of Ground Anchor	10
		a. Theoretical Analysis	10
		b. Dimensional Analysis	13
		c. Experimental Anchor Test	13
		d. Finite Element Method	17
		e. Centrifugal Model Test	17

14445

2.6	Predic	ted Formula of Pullout Capacity	18
2.7	Factor	rs influencing in pullout Capacity	21
2.8	Failure	e Surface of Vertical Ground Anchor	22
	2.8.1	The Cone Method	23
	2.8.2	The Shear Method	23
	2.8.3	The Curve Method	23
	2.8.4	The Bearing Capacity or Cavity Method	24
2.9	Homo	geneous Sand	24
	2.9.1	Pluviation Method	24
	2.9.2	Model of Sand Raining Test	25
2.10	10 Good Remarks		26

CHAPTER 3: METHODOLOGY

3.1	Introd	luction	28
3.2	Model	ling Experimental Anchor Test	28
	3.2.1	Sand Raining Apparatus (Pluviation Method)	28
	3.2.2	Anchor Test Apparatus	29
		a. Circular Anchor Plate Models	33
		b. Measurement Devices	33
		c. Strain Controlled Machine	33
3.3	Prepa	ration of Homogeneous Sand	34
1010	3.3.1	Sources of Homogeneous Sand	35
	3.3.2	Physical Properties of Homogeneous Sand	35
		a. Sieve Analysis Test	35
		b. Specific Gravity Test	35
		c. Minimum and Maximum of Porosities	35
		d. Shear Strength of Homogeneous Sand	36
	3.3.3	Pluviation Method	37
		a. Weight Method	38
		b. Volume Method	39
3.4	Calibr	ation of Proving Ring	40
3.5	Pullou	It Capacity Test	40
	3.5.1	Experimental Setup	41
	3.5.2	Anchor Assembly	42
	3.5.3	Loading Assembly	42
	3.5.4	Strain Controlled Test	42
3.6	Identi	fication of General Failure Surface of Anchor	44
3.7	Sugge	estion of Pullout Capacity Expression	44

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Introd	uction	46
4.2	Physic	al Properties of Homogeneous Sand	46
	4.2.1	Sieve Analysis Result	46
	4.2.2	Specific Gravity Test Result	46
	4.2.3	Minimum and Maximum Porosities of Sand Result	47
	4.2.4	Summary of Sand Physical Properties	48
	4.2.5	Triaxial Test Result	49

4.3	Calibra	ation of Sand Spreader	49
	4.3.1	Calibration using Weight Method	50
		a. Loose Sand (Aperture 9 mm size)	50
		b. Medium-Dense Sand (Aperture 7 mm size)	51
		c. Dense Sand (Aperture 4 mm size)	52
	4.3.2	Calibration using Volume Method	54
4.4	Calibra	ation of Proving Ring	55
4.5	Pullou	t Capacity Test Results	56
4.6	Behav	iour of Vertical Ground Anchor in Homogeneous Sand	62
4.7	Load-	displacement Behaviour	64
4.8	Gener	al Failure Surface in Homogeneous Sand Bed	66
	4.8.1	Shallow Vertical Ground Anchor	67
	4.8.2	Deep Vertical Ground Anchor	68
	4.8.3	Comparison with others Previous Research	70
4.9	Sugge	stion of Pullout Capacity Expression	71
	4.9.1	Determination of The Pullout Capacity	71
		 Pullout Capacity of Shallow Anchor in Homogeneous Sand 	72
		 Pullout Capacity of Deep Anchor in Homogeneous Sand 	74
	4.9.2	Comparison of Predicted Formula and Experimental Results	77
	4.9.3	Comparison of Predicted Formula and Previous Theories	80
	4.9.4	Calibration of predicted Formula	82
СНА	PTER	5: CONCLUSIONS AND RECOMMENDATIONS	
5.1	Gene	ral Remarks	85
5.2	Conc	lusions	85
5.3	Reco	mmendations for Further Work	86
DEE	EDENC	FS	88

APPENDICES

UNIVERSITI MALAYSIA SARAH

93

LIST OF TABLES

		Page
Table 2.1	Experimental Tests on Vertical Ground Anchor in Sand	14
Table 3.1	Frequency of Anchor Test Programme	41
Table 3.2	Frequency Test for failure Surface Programme	44
Table 4.1	Tabulated Data for Specific Gravity	47
Table 4.2	Results for Minimum Porosities	48
Table 4.3	Results for Maximum Porosities	48
Table 4.4	Physical Properties of Homogeneous Sand	49
Table 4.5	Unit Weight of Dry Homogeneous Sand	54
Table 4.6	Tabulated data of Unit weight obtained using Volume Method in Homogeneous Dense Sand	55
Table 4.7	Summary of Anchor Pullout Test for 9 mm Discharge Plate	56
Table 4.8	Summary of Anchor Pullout Test for 7 mm Discharge Plate	57
Table 4.9	Summary of Anchor Pullout Test for 4 mm Discharge Plate	58
Table 4.10	Tabulated data for Apex Angle of Failure Surface	67

LIST OF FIGURES

		Page
Figure 1.1	Transmission Tower	2
Figure 1.2	Suspension Bridge Model	2
Figure 1.3	Suspension Bridge Collapse at Kuala Dipang, Perak	3
Figure 2.1	Component of Vertical Ground Anchor	7
Figure 2.2	Types of Vertical Ground Anchor	8
Figure 2.3	Failure Surface of Vertical Ground Anchor by Balla (1961)	11
Figure 2.4	Simplified Failure Surface by Fadl (1981)	12
Figure 2.5	Schematic Diagram of Experimental Anchor Test Model used by Fadl (1981) & Ideris (1986)	15
Figure 2.6	Schematic Diagram of Experimental Anchor test Model used by Yang Jin-Kaun (1984)	15
Figure 2.7	Experimental Anchor Test Model by Frgic et al. (2002)	16
Figure 2.8	Experimental Anchor Test Model by Kumar and Bhoi (2008)	16
Figure 2.9	Centrifugal Model Test by Dickin and Laman (2004)	18
Figure 2.10	Variation of K_b with L/ D and ϕ by Meyerhof (1973)	20
Figure 2.11	Pullout Model of Vertical Ground Anchor by Kulhawy (1985)	22
Figure 2.12	Surface Failure Model by Kulhawy (1985)	23
Figure 2.13	Sand Raining Model used by Fadl (1981) and Ideris (1986)	25
Figure 2.14	Sand Raining Model used by Al-Sidqi (2005)	26
Figure 3.1	Model of Sand Raining apparatus	30
Figure 3.2	Sand Spreader Model	31
Figure 3.3	Three types of Discharge Plate	31
Figure 3.4	Anchor Test Apparatus Model: (a) Front View (b) Side View	32

Figure 3.5	Circular Anchor Plate Model	33
Figure 3.6	Strain- Controlled Machine	34
Figure 3.7	Approximate Field method	36
Figure 3.8	Pouring in Air Method	37
Figure 3.9	Series of Pots	38
Figure 3.10	Undulating Surface of Sand in Sand Box	40
Figure 3.11	Diagrammatic Layout of Vertical Ground Anchor test	43
Figure 3.12	Experimental setup for identification of Anchor Failure Surface	45
Figure 4.1	Particle Size Distribution Curves of Sand	47
Figure 4.2	Variation of Friction Angle with Porosities	49
Figure 4.3	Lateral Variation of Unit Weight of Homogeneous Sand within layer for 9 mm φ Aperture	50
Figure 4.4	Lateral Variation (Along Layer) of Unit Weight of Homogeneous Sand for 9 mm φ Aperture	51
Figure 4.5	Lateral Variations of Unit Weight of Homogeneous Sand within layer for 7 mm φ Aperture	52
Figure 4.6	Lateral Variation (Along Layer) of Unit Weight of Homogeneous Sand for 7 mm φ Aperture	52
Figure 4.7	Lateral Variation of Unit Weight of Homogeneous Sand within layer for 4 mm φ Aperture	53
Figure 4.8	Lateral Variation (Along Layer) of unit Weight of Homogeneous Sand for 4 mm φ Aperture	53
Figure 4.9	Load (N) versus Division (div)	55
Figure 4.10	Pullout Capacity versus D/B	59
Figure 4.11	Comparison of Present Results with Previous Research in Loose Homogeneous Sand	60

Figure 4.12	Comparison of Present Results with Previous Research in Medium-Dense Homogeneous Sand	60
Figure 4.13	Comparison of Present Results with Previous Research in Homogeneous Dense Sand	61
Figure 4.14	Breakout Factor versus D/B at Different Unit of Weight in Homogeneous Sand	62
Figure 4.15	Comparison of Present Result with Previous research in Homogeneous Dense Sand	62
Figure 4.16	Load (N) versus Displacement (mm) for Loose Sand	64
Figure 4.17	Load (N) versus Displacement (mm) for Medium-Dense Sand	65
Figure 4.18	Load (N) versus Displacement (mm) for Dense Sand	65
Figure 4.19	Failure Surface in Medium-Dense Sand for Shallow anchor at D/B=3	68
Figure 4.20	Predicted Failure Surface of Shallow Anchor in Homogeneous Sand	68
Figure 4.21	Failure Surface for Deep Anchor in Medium-Dense Sand at D/B =9	69
Figure 4.22	Predicted Failure Surface of Deep Anchor in Homogeneous Sand	70
Figure 4.23	Geometrical Properties of Failure Surface for Shallow Anchor in Homogeneous Sand	72
Figure 4.24	Geometrical Properties of Failure Surface for Deep Anchor in Homogeneous Sand	77
Figure 4.25	Comparison between Predicted Formula and Experimental Result in Homogeneous Loose Sand	78
Figure 4.26	Comparison between Predicted Formula and Experimental Result in Homogeneous Medium-Dense Sand	78
Figure 4.27	Comparison between Predicted Formula and Experimental Result in Homogeneous Dense Sand	79
Figure 4.28	Comparison in Homogeneous Loose Sand	80

Figure 4.29	Comparison in Homogeneous Medium-Dense Sand	81
Figure 4.30	Comparison in Homogeneous Dense Sand	81
Figure 4.31	Comparison between Predicted Formula and Experimental result in Homogeneous Loose Sand (After Calibration)	
Figure 4.32	Comparison between Predicted Formula and Experimental result in Homogeneous Medium-Dense Sand (After Calibration)	83
Figure 4.33	Comparison between Predicted Formula and Experimental result in Homogeneous Dense Sand (After Calibration)	84
Appendix A		
Figure A1	Sand-Raining System	93
Figure A2	Sand Box	94
Figure A3	Spreader	94
Figure A4	Motor Drive	95
Figure A5	Discharge Plate	95
Figure A6	Driving Gear	96
Figure A7	Chain Locked Jacking System	
Figure A8	Proving Ring	97
Figure A9	Sand Storage Tank	97
Figure A10	Particle Size Analyzer Machine	98
Figure A11	Centering System	98
Figure A12	Screw to Fixed Shaft with Proving Ring	99
Figure A13	Half-Cut Model of Circular Anchor (50 mm Diameter)	99
Figure A14	Half-Cut Model of Circular Anchor Located at Transparent Perspex	100

Appendix D

Figure D1	Loose Sand Surface in Shallow anchor $(D/B = 3)$ before failure	114
Figure D2	Loose Sand Failure Surface in Shallow anchor (D/B = 3)	114
Figure D3	Medium-Dense Sand Surface in Shallow anchor $(D/B = 3)$ before failure	115
Figure D4	Medium-Dense Sand Failure Surface in Shallow anchor $(D/B = 3)$	115
Figure D5	Dense Sand Surface in Shallow anchor $(D/B = 3)$ before failure	116
Figure D6	Dense Sand Failure Surface in Shallow anchor $(D/B = 3)$	116
Figure D7	Loose Sand Surface in Shallow anchor $(D/B = 3)$ before failure	117
Figure D8	Loose Sand Failure Surface in Shallow anchor $(D/B = 3)$	117
Figure D9	Medium-Dense Sand Surface in Deep anchor $(D/B = 9)$ before failure	
Figure D10	Medium-Dense Sand Failure Surface in Deep anchor $(D/B = 9)$	118
Figure D11	Dense Sand Surface in Deep anchor $(D/B = 9)$ before failure	119
Figure D12	Dense Sand Failure Surface in Deep anchor $(D/B = 9)$	119

LIST OF SYMBOLS

- B Size or Diameter of Anchor, mm
- D Depth of Embedment of Shallow Anchor, mm
- H Depth of Embedment of Deep Anchor, mm
- D/B Depth to Diameter ratio
- *k* Coefficient of Lateral Earth Pressure
- Υ Unit Weight of Sand, mm
- η Porosity of Sand
- ϕ Angle of Internal Friction
- α Apex Angle from the Vertical through the Anchor Edge
- P Pullout Load on Vertical Anchor, kN
- *P_u* Pullout Capacity of Anchor, kN/m²
- Dr Relative Density of Sand
- emax Maximum Void Ratio of Sand
- emin Minimum Void Ratio of Sand
- δ Displacement of Vertical Anchor, mm
- \overline{c} $D_r \cos \phi$

$$k_o = 1 - \sin \varphi$$

M $1.2[D_r(1 + \cos^2 \phi) + (1 + \sin^2 \phi)]$

A.

P perimeter of pile cross sectionL length of pile embedment

$$A = \frac{\pi}{8} \cdot \gamma \cdot B^2 \cdot a$$

PL

$$\bar{B}$$
 $\pi . B k_1 . (\frac{B}{2a})^{k_2} . \frac{a^2}{(k_2 + 1)^{-2}} . \gamma . \sin \varphi$

$$\bar{C} = \frac{1}{8}\pi \cdot k_1 \cdot \left(\frac{B}{2a}\right)^{k_2} \cdot \frac{B^3}{(k_2+3)^2} \cdot \gamma \cdot \sin \varphi$$

$$= \frac{1}{8}\pi \cdot k_1 \cdot \left(\frac{B}{2a}\right)^{k_2} \cdot \frac{B^3}{a^2} \cdot \gamma \cdot \sin \varphi \cdot \left(\frac{a^2}{(k_2+1)^2} + \frac{a}{(k_2+3)} \cdot H\right)$$

$$= \pi \cdot B \cdot k_1 \cdot \left(\frac{B}{2a}\right)^{k_2} \cdot \gamma \cdot \sin \varphi \cdot \left(\frac{a^2}{(k_2+1)^2} + \frac{a}{(k_2+1)} \cdot H\right)$$

$$= \frac{1}{2}\pi \cdot e^{\frac{B}{2}} \cdot e^{\frac{k_2}{2}}$$

$$k_1 \qquad \frac{1}{2} B. k_1 (\frac{B}{2a})^{\kappa_2} . \gamma. \sin \varphi$$

$$k_2 \qquad \frac{1}{16} \cdot \frac{B^3}{a^2} \cdot k_1 \left(\frac{B}{2a}\right)^{k_2} \cdot \gamma \cdot \sin \varphi$$

a Constant parameter

LIST OF APPENDIX

		Page
Appendix A	Experimental Test Apparatus	93
Appendix B	Tabulation Data During Experimental Test	101
Appendix C	Calculation Example for Porosities	112
Appendix D	Delineation Surface Before and After Failure	114

CHAPTER 1

INTRODUCTION

1.1 Background

The drastic development in construction industry especially in our country has imposed our engineers to design a safe, economic and attractive structure. In civil engineering works, sometimes the structures have requirements to resist tensile forces acting on foundations embedded in the ground by use of tension members. These members are referred to as ground anchors which the direction can be vertical, horizontal or inclined. This study interested on vertical ground anchor which use as foundation structure on transmission tower, retaining wall and suspension bridge. The transmission tower (Figure 1.1) is built to withstand the load of electric cables. Apart from its own load and electric cable, it also faces the lateral wind load. Thus, the assessment of transmission tower foundation under tension is similar to the assessment of pullout capacity of vertical ground anchors. The suspension bridge (Figure 1.2) is widely used to connect one place to another place which is separated by river or lake or sea, where by it will bear the heavy burden of its own weight and live load to pass through. When the load is on it, the suspension bridge foundation will have a direct tensile load. Thus, the assessment of suspension bridge foundation is also similar to the assessment of pullout capacity of vertical ground anchors. According to Hanna, Sparks and Yilmaz (1972), anchors may be used singly or in groups depending on the magnitude of the applied load, the ground conditions present and details of the structure. The size of an anchor varies widely and anchors of a few to several hundred tons working capacities are in use.

Today, so many types of anchors are produced in a large scale to meet the large demand. However, there is still structural foundation failure which is caused by excessive tensile load, for example when the suspension bridge collapses at Kuala Dipang, Perak (Figure 1.3) which involves three fatalities. The investigation committee found out that the concrete block connection in pylon A could not

handle the pullout force from the back-stayed cable (Humayun Kabir, 2009). It was shown that the pullout capacity of the concrete block which functions as anchor in suspension bridge was not calculated properly during designing process. It is our responsibility to find out the solutions so that the incidents would not happen again.

Figure 1.1: Transmission Tower

Figure 1.2: Suspension Bridge Model

Figure 1.3: Suspension Bridge Collapse at Kuala Dipang, Perak (26/10/2009) Source: <u>http://www.malaysiakini.com</u>

Several methods are available in the literature in order to calculate the pullout capacity of anchors. Basically, the methods are divided by two (2) type's i.e. experimental test and empirical method. According to Niroumand and Kassim (2010), experimental test can provide a better understanding and predicting the ultimate pullout capacity of the anchors in a range of soil types, but current researches on pullout capacity are focused on empirical method. The advancement in finite element method, the option of simulating varies type of anchor foundation and the attractive cost associated with it has resulted in research focusing on using empirical method. However, because of the complexity of soil stratigraphy and the inability of current soil mechanics theories to fully describe the actual field performance of a soil, some previous researches used a semi-empirical method in order to study the behavior of ground anchor embedded in sand. Semi-empirical method. In this research, the semi-empirical method used to find the appropriate pullout expression for the vertical ground anchor in dry homogeneous sand.

3

1.2 Problem Statement

According to Fadl (1981), "None of the theories gave a comprehensive solution to the behaviors of anchors at failure for a wide range of soil types and conditions". Many researchers have worked on this topic in other countries but the physical properties of sand and experimental method used are different. As such no single theory is fit to study the behaviors of vertical ground anchor. This is because of many variables involved and also depends on the method used e.g., preparation of homogeneous sand bed and Anchor test model. This research try to find out the comprehensive solution to the behaviors of vertical ground anchor embedded in dry homogeneous sand using semi-empirical method. Based on that, this research was aimed to study the pullout capacity of vertical ground anchor in specifically prepared dry homogeneous sand and compare with finding of previous work. Experimental work and analysis were conducted and described in this thesis.

1.3 Objectives of Research

The research aims to study the pullout capacity of vertical ground anchor embedded in dry homogeneous sand using semi-empirical method. Specifically designed experimental model and prepared homogeneous sand were used in conducting pullout test for vertical ground anchor. Some of objectives are set in order to achieve the aim of this research. They are:

1. To develop a physical experimental method in order to study the behavior of vertical ground anchor in dry homogeneous sand bed.

2. To determine the pullout capacity of vertical ground anchor in dry homogeneous sand at different relative densities.

 To define the general failure surface of circular vertical anchor in dry homogeneous sand bed.

To suggest an appropriate pullout expression for the vertical ground anchor in dry homogeneous sand.

1.4 Scope of Work

To achieve the objectives of this research, one experimental model anchor test was designed and fabricated for dry homogeneous sand bed. The experimental test using in this study because of the following:

4

- 1. Using dry homogeneous sand as an embedment medium.
- To create physical experimental model that could be applied to represent the behavior of circular vertical ground anchor. This model could be used for further research on foundation in tension.
- 3. Researchers are currently focused on empirical method only. Experimental testing needed to be improved by incorporating better technique so that advancement can be made in the area. Combination methods between experimental test and empirical method will give more comprehensive to study the behavior of anchor in homogeneous sand.

A Pluviation technique used to fill the dry homogeneous sand in box. Two methods were used to calibrate the sand spreader in order to make sure the sand bed is perfectly homogeneous. Three sizes of diameter circular anchor that are 25 mm, 50 mm and 75 mm were used in this test. The tests done were in medium sand at three values of relative density i.e. 29%, 37% and 53%, given as three rates of deposition namely low, medium and high which produced loose, medium dense and dense beds in the context of the research. The test covered a range of depth/ diameter (D/B) ratios from 1 up to 24 to cover shallow and deep anchor, with the anchors being subjected to vertical loads under displacement control. To identify the failure surface, half-cut of 50 mm diameter model circular anchor was used with change color to color of soil for delineating the mode of failure in the soil mass during pullout. The predicted formula of pullout capacity in shallow and deep anchor was predicted using semi-empirical method i.e., combination method between physical experimental test and analytical method. The comparison applied against predicted formula, experimental test and previous studies in order to validate the predicted formula obtain is a proper formula for pullout capacity of vertical ground anchor in dry homogeneous sand.

1.5 Result Expectations

From this research, the result expectations will be:

 Development of a laboratory experimental model for pullout testing of vertical ground anchor.

REFERENCES

- Al-Shayea, N.A. 1994. Detection of Surface Cavities using The Spectral-Analyses of Surface Waves Method. Dissertation, Michigan: University of Michigan.
- Al-Sidqi, H. 2005. *Pullout Capacity of Block Anchor in Sand.* Master Thesis, University of King Fahd, Dhahran, Saudi Arabia.
- Andreadis, A., Harvey, R.C., and Burley, E. 1981. Embedded Anchor Respond to Anchor Loading. Journal of The Geotechnical Engineering Division, ASCE, vol. 107, No.1, pp. 59 - 78.
- Baker, W.H., and Kondner, R.L. 1966. Pullout Load Capacity of a Circular Earth Anchor Buried in Sand. Highway Research Record, No. 108, pp. 1-10.
- Balla, A. 1961. The Resistance to Breaking out of Mushroom Foundation of Pylons. Proceeding 5th International Conference on Soil Mechanics and Foundation Engineering, pp.569 - 576.
- Bemben, S.M and Kupferman, M. 1975. The Vertical Holding Capacity of Marine Anchor Flukes Subjected to Static and Cyclic Loading. Proc. 7th Offshore Techn. Conf., Dallas, Vol. 1, pp. 363 - 374.
- Bishop, S.W., and Henkel, D.J. 1962. *Measurement of Soil Properties in The Triaxial Test*. Edward Arnold, London.
- Bouazza, A. and Finlay, T.W. 1990. Uplift Capacity of Plate Anchors in a Two-Layered Sand. Geotechnique, 40 (2), pp. 293 – 297.
- Bosscher, P.J. 1981. Soil Analyses in Sandy Slopes. Phd. Dissertation, Civil Engineering Department, Michigan Arbor, pp. 121.
- British Standard Institution BS 1377:1990: Part 1 & 2. *Methods of Testing for Soils* for Civil Engineering Purposes. BSI, London.
- Clemence, S.P. and Veesaert, C.J. 1977. *Dynamic Pullout Resistance of Anchor in Sand.* International Symposium of Soil-Structure Interaction, Jan. 3-7, pp. 389 - 840.
- Coduto, D.P. 2001. Foundation Design: Principles and Practice (2nd. Edition). Prentice-Hall, New Jersey.
- Das, B.M. 1983. Ultimate Uplift Capacity of Single Pile in Sand. Proceedings, Coastal Structures, ASCE, pp. 301 -322.
- Desai, C.S., Muqtadir, A., and Scheele, F. 1986. *Interaction Analysis of Anchor-System.* Journal of The Geotechnical Engineering Division, ASCE, vol. 112, No.5.

- Dickin, E.A. and Leung, C.F. 1983. Centrifugal Model Tests on Vertical Anchor Plates. Journal of The Geotechnical Engineering Division, ASCE, vol. 109(12), pp. 1503 - 1525.
- Dickin, E.A. and Leung, C.F. 1990. *Performance of Piles with Enlarged Bases Subjected to Uplift Forces*. Canadian Geotechnical Journal 27 (5), pp. 546 -556.
- Dickin, E.A. and Laman, M. 2004. Uplift Response of Strip Anchors in Cohesionless Soil. Advances in Engineering Software 38 (2007), pp. 618 – 625.
- Esquivel-Diaz. 1967. Pullout Resistance of Deeply Buried Anchors in Sand. Duke Soil Mechanics Series No. 8, Duke University, Durham, North Carolina.
- Fadl, M.O. 1981. The Behavior of Plate Anchors in Sand. PhD Thesis, University of Glasgow, UK.
- Frgic, L., Marovic, P., and Tor, K. 2002. Pullout Capacity of Spatial Anchors. Engineering Computations; 2004; 21, 5/6; ABI/ INFORM Global, pp. 598 -609.
- Ghaly, A., Hanna, A.M., Hanna, M.S. 1991. Uplift Behavior of Screw Anchor in Sand. Journal of The Geotechnical Engineering, ASCE, 117(5), pp. 773 -793.
- Hanna, A., Ayadat, T. and Sabry, M. 2006. Pullout Resistance of Single Vertical Shallow Helical and Plate Anchors in Sand. Journal of The Geotechnical Geology Eng., vol. 25, 559 - 573.
- Hanna, T.H. and Carr, R. 1971. The Behavior of Plate Anchors in normally and Consolidated Sands. Proc. 4th. Budapest Conf. of Soil Mechanics and Foundation Engineering, Budapest, Hungary, pp. 589 – 600.
- Hanna, T.H., Sparks, R., and Yilmaz, M. 1972. Anchor Behavior in Sand. Journal of The Soil Mechanics and Foundations Division, Nov. 1972, Vol. 98.
- Humayun Kabir. 2009. "Weak Foundation caused Bridge Collapse", in <u>http://www.Malaysiakini.com</u>. Retrieved 12 November 2009.
- Ideris Zakaria. 1986. The Effect on The Uplift Resistance of Anchors of Ground Disturbance during Placing. Master Thesis, Univ. of Glasgow. UK.
- Ireland, H.O. 1957. *Pulling Tests on Piles in Sand.* Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, Vol.1, pp.43-45.
- Ilamparuthi, K. and Dickin, E.A. 2000(a). Predictions of The Uplift Response of Model Belled Piles in Geogrid-Cell-Reinforced Sand. Geotextiles and Geomembranes 19 (2001), pp. 88 – 109.

- Ilamparuthi, K., and Dickin, E.A. 2000(b). The Influence of Soil on The Uplift Behavior of Belled Piles Embedded in Sand. Geotextiles and Geomembranes 19 (2001), pp. 1 – 22.
- Ilamparuthi, K., and Muthukrishnaiah, K. 1999. Anchors in Sand Bed: Delineation of Rupture Surface. Ocean Engineering 29, pp. 1249 -1273.
- Ilamparuthi, K., Dickin, E.A., and Muthukrishnaiah, K. 2002. Experimental in Investigation of The Uplift Behavior of Circular Plate Anchors Embedded in Sand. Canadian Geotechnical Journal, 39, pp. 648 – 664.
- Krishnaswamy, N.R. and Parashar, S.P. 1994. Uplift Behavior of Plate Anchors with Geosynthetics. Geotextiles and Geomembranes, Vol. 13, pp. 67 – 89.
- Kulhawy, F.H. 1985. Uplift Behavior of Shallow Soil Anchors An Overview. Oct. 24 Int. Conf. Soil Mech. And Foundation Engineering, Michigan, ASCE, pp. 1-25.
- Kolbuszewski, J.J. 1948. *General Investigation of The Fundamental Factors Controlling Loose Packing of Sands.* Proc. Snd. Conf. Int. Society of Soil Mechanics and Foundation Engineering, Rotterdam.
- Kumar, J., and Bhoi, M.K. 2008. Vertical Uplift Capacity of equally Spaced Multiple Strip Anchors in Sand. Geotechnical and Geological Engineering, Springer, 26 (4), pp. 469 – 477.
- Majer, J. 1955. Zur Berechnung Von Zugfundamenten. Osterreichische Bauzeitgschrift 10 (5), pp. 85 90 (in Jerman)
- Mariupol Skii, L.G. 1965. *Bearing Capacity of Anchor Foundations*. Soil Mechanics and Foundation Engineering, vol. 2, pp. 26 - 32.
- Matsuo, M. 1968. *Study on The Uplift Resistance of Footing*. Japanese Soc. Soil Mechanics and Engineering, Vol. 8, No.1, pp. 18 48.
- Merifield, R.S., Sloan, S.W., and Yu, H.S. 2001. Stability of Plate Anchors in Undrained Clay. Journal of The Geotechnical Engineering Division, ASCE, vol. 51, No.2, 141 - 153.
- Merouani, Zein-Eddine and Dr. Techn. 2007. *Behavior of Anchors in Sand: Deterministic and Probabilistic Analysis*. Dissertation, Kungliga Tekniska Hogskolan, Sweden, DAI-C 68/04, pp. 1083.
- Meyerhof, G.G., and Adams, J.I. 1968. *The Uplift Capacity of Foundation*. Canadian Geotechnical Journal, vol. 5, No.4, pp. 225 244.
- Meyerhof, G.G. 1973. Uplift resistance of Inclined Anchors and Piles. Proc. 6th Int. Conf. Soil Mechanics and Foundation Engineering, Montreal, Vol. 2, pp. 410 – 413.

- Mors, H. 1959. The Behavior of Mast Foundations Subjected to Tensile Forces. Bautechnik, Vol. 36, No. 10, pp. 367 – 378.
- Murray, E.J., and Geddes, J.D. 1987. Uplift of Anchor Plates in Sand. Journal of The Geotechnical Engineering Division, ASCE, vol. 113, No.3, pp. 202 - 215.
- Murray, E.J., and Geddes, J.D. 2006. Resistance of Passive inclined Anchors in Cohesionless Medium. Journal of The Geotechnical Engineering Division, ASCE, vol. 39, No.3, pp. 417 - 431.
- Niroumand, H., and Kassim, Kh.A. 2010. Experimental Study of Horizontal Anchor Plates in Cohesionless Soils. Electronic Journal of Geotechnical Engineering (EJGE), vol. 15, pp. 293 - 306.
- Ovesen, N.K. 1964. Passive Anchor Slabs: Calculation Methods and Model Test. Danish Geotechnical Institute, Bull. No. 4, pp. 5 – 39.
- Ovesen, N.K. 1981. Centrifuge Tests on The Uplift Capacity of Anchors. Proceeding, 10th International Conference on Soil Mechanics and Foundation Engineering, Vol. No. 10 (1), pp. 717 - 722.
- Pearce, A. 2000. Experimental Investigation into The Pullout Capacity of Plate Anchors in Sand. M. Sc Thesis, University of Newcastle, Australia.
- Petrakis. 1990. An Experimental Investigation of The Behavior of Granular Media Under Load; In A study of The Behavior and Micromechanical Modeling of Granular Soil. Department of Civil Eng., Renselaer Polytechnic Ins., Troy, New York.
- Remeshbabu, M.K. 1998. Pullout Capacity and The Load Deformation Behavior of The Horizontal Shallow Anchor Plate in Sand. M. Tech. Thesis, University of Jawaharlal Nehru, New Delhi, India.
- Rowe, R.K., and Davis, E.H. 1982. *The Behavior of Anchor Plates in Sand.* Geotechnique 32, No. 1, pp. 25 – 41.
- Sabatini, P.J., Pass, D.G., and Bachus, R.C. 1999. *Ground Anchor and Anchor Systems*. Technical Report; Geotechnical Engineering Circular No. 4. Department of Highway Administration, Washington DC, USA.
- Saeedy, H.S. 1987. Stability of Circular Vertical Anchors. Canadian Geotech. Journal, Vol. 24, pp. 452 – 456.
- Skempton, A.W. 1947. Determination of Minimum and Maximum Porosities in Sand. Journal of Geological Society, London, England, Vol. 24, pp. 119 -135.

- Sutherland, H.B. 1965. Model Studies for Shaft Rising through Cohesionless Soil. Proceeding 6th International Conference on Soil Mechanics and Foundation Engineering, Vol. 11, pp. 410 – 513.
- Sutherland, H.B., Finlay, T.W., and Fadl, M.O. 1982. *Uplift Capacity of Embedded Anchors in Sand*. Proceedings of third International Conference on The Behavior of Offshore Structure, Cambridge, MA, pp. 451 – 463.
- Tagaya, K., Scott, R.F., and Aboshi, H. 1988. Pullout Resistance of Buried Anchor in Sand. Soils and Foundations 28 (3), pp. 114 – 130.
- Vaid, Y.P., and Negussey, D. 1988. *Preparation of Reconstituted Sand Specimens*. Adv. Triaxial Testing of Soil and Rock, ASTM STP 977; 405 – 417.
- Vesic, A.S. 1972. Expansion of Cavities in Infinite Soil Mass. Proc. ASCE, Soil Mechanics and Foundation Division, Vol. 98, SM 3, pp. 265 – 290.
- Wang, M.C., and Wu, A.H. 1980. Yielding of Anchor in Sand. Proceedings of The ASCE, Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering, Hollywood, Florida, pp. 291 – 307.
- Yap, E.J. 1979. A Study of The Behavior of Vertical Anchors Using The Finite Element Method. PhD. Thesis, University of Aberdeen.
- Yang Jin-Kaun. 1984. *Pullout Resistance of Horizontal Group Anchors in Sand*. Master of Science Thesis, University of Texas At El Paso.

