DEVELOPMENT OF A FLUIDIZED BED SOLID STATE FERMENTER FOR THE CONVERSION OF PALM KERNEL CAKE AS POULTRY FEED

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH

2007

DEVELOPMENT OF A FLUIDIZED BED SOLID STATE FERMENTER FOR THE CONVERSION OF PALM KERNEL CAKE AS POULTRY FEED

FOONG CHEE WOH

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF SCIENCE

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH

2007

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS[@]

JUDUL: DEVELOPMENT OF A FLUIDIZED BED SOLID STATE FERMENTER FOR THE CONVERSION OF PALM KERNEL CAKE AS POULTRY FEED

IJAZAH: SARJANA SAINS (KEJURUTERAAN KIMIA)

SESI PENGAJIAN: 2004-2007

Saya, **FOONG CHEE WOH** mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian saya.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

Disahkan oleh

4. TIDAK TERHAD.

Tarikh:

Penulis: FOONG CHEE WOH

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

TANDATANGAN PUSTAKAWAN Tarikh:

Penyelia: En. Jidon Janaun Tarikh: $\frac{3}{2}\left(5\right)$ JIDON A. JANAUN LECTURER School of Engineering & Information Technology Universiti Mataysta Saban

CATATAN: (a) Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertassi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM)

DECLARATION

The materials in this thesis are original except for quotations, accepts, summaries and references, which have been duly acknowledged.

FOONG CHEE WOH

PS04-008-010

5 APRIL 2007

ACKNOWLEDGEMENT

First of all, I would like to express my heartiest and sincere gratitude to my supervisors Professor Kamatam Krishnaiah, Associate Professor Auti Prabhakar, and Mr. Jidon Janaun for their invaluable supervision, guidance, and suggestions throughout the period of this project.

Special thanks to Professor Duvvuri Subbarao who has given me a lot of constructive suggestions and guidance in my work. I would like to take this opportunity to express my genuine appreciation to Mr. Panjiman, Mr. Abdullah Tarikim, Cik Noridah Abbas, and Cik Aemy who have facilitated me in all my lab works.

I would like to express my deepest gratitude to Professor Datin Ann Anton as our project leader for giving us all kind of supports along the way. Besides, I would like to thank Korea Research Institute of Bioscience and Biotechnology (KRIBB) especially Dr. Kim Chul Ho and Dr. Choi Ho Min for providing us training.

The financial assistance granted by UMS Fundamental Research Grant B-0101-13/PRU037 is highly acknowledged. In between, I would like to thank IOI Edible Oils Sdn. Bhd. for providing us palm kernel cake in this research.

Last but not least, I would like to thank my project partners; Chin Hooi Chuan, Wong Yoke Phooi, Saw Horng Yuan, and all the people who have given me support and encouragement all the time.

ABSTRACT

Solid state fermentation (SSF) which involves growth of microorganism on moist solid substrates in the absence of free flowing water, has gained renewed attention over submerged fermentation for specific applications. During the SSF process in fermenter, there are three main engineering problems encountered such as the removal of metabolic heat from the substrate, diffusion of O₂ and moisture through the substrate, and heterogeneity of the substrate and inoculum. A fluidized bed fermenter in which the particles move independently like a fluid was proposed to conduct SSF of PKC. Hydrodynamic studies showed that the experimental U_{mf} for 855µm, 655µm and 363µm PKC particles were 0.340 m/s, 0.205 m/s and 0.080 m/s, respectively, where as the U_{mf} calculated using Wen and Yu correlation was 0.206 m/s, 0.131 m/s, and 0.043 m/s. The discrepancy between experimental and theoretical values most probably due to the breakage of the PKC particles and the presence of shells with different density. Heat transfer studies have also been carried out. The results showed that the heat loss from PKC to air was very fast and increased with increase of air velocity. In contrary, heat loss from PKC to air was increased with decrease in air relative humidity and bed height. Throughout the study, rapid heat transfer from PKC to air was experimentally observed within the first 150 seconds with a temperature drop of 30°C. This indicated that the excellent heat transfer between palm kernel cake and air allows solid state fermentation of PKC without accumulation of metabolic heat in the fermenter. A mathematical model for heat transfer between PKC and fluidizing medium was proposed which can predict the experimental data quite satisfactorily within an average error of \pm 15%. Apart from heat removal, water adsorption on PKC from air to bed was carried out. It showed that the increase of adsorbed water in PKC was proportional to air relative humidity and inversely proportional to superficial air velocity. The maximum moisture content adsorbed by PKC under fluidization conditions was around 10% (on dry basis). For SSF operation, 10% moisture content was too low for microbial growth. Therefore, a water dropping system was installed to add water on PKC to maintain the moisture content at required level. A mathematical model for mass transfer between PKC particle and fluidizing air was proposed which can predict the experimental data quite satisfactorily. Finally, the effect of superficial air velocity on SSF of PKC was studied in the prototype fermenter, which can be operated as fluidized bed and packed bed, using fungal strain Aspergillus flavus. The strain was isolated from PKC sample. The maximum increase of reducing sugar concentration was at 0.17 m/s. It increased about 28%, from 14.55 mg mannose/g dry PKC to 18.63 mg mannose/g dry PKC. Meanwhile, the hemicellulose content reduced about 10%.

ABSTRAK

PEMBANGUNAN LAPISAN TERBENDALIR SEBAGAI BIOREAKTOR SUBSTRAT PEPEJAL UNTUK PENUKARAN SISA KELAPA SAWIT SEBAGAI MAKANAN TERNAKAN

Penapaian pepejal telah menjadi satu alternatif yang menarik untuk menggantikan penapaian cecair walaupun penapaian pepejal mempunyai beberapa masalah kejuruteraan seperti penyingkiran haba metabolisma, penghantaran oksigen dan kelembapan ke jarah, dan pencampuran jarah yang seragam. Bioreaktor lapisan terbendalir adalah salah satu pilihan yang boleh mengatasi masalah tersebut. Dalam kertas penyelidikan ini, satu bioreaktor lapisan terbendalir telah direka. Kajian hydrodinamik telah dijalankan dan keputusannya menunjukkan U_mteksperimen untuk 855µm, 655µm and 363µm saiz partikel PKC adalah 0.340 m/s, 0.205 m/s and 0.080 m/s manakala Umf teori dari persamaan Wen and Yu adalah 0.206 m/s, 0.131 m/s, and 0.043 m/s. Perbezaan antara nilai eksperimen dan teori kemungkinan besar disebabkan oleh pemecahan PKC partikel dan kehadiran tempurung kelapa sawit yang lain ketumpatan. Selain daripada kajian hydrodinamik, kajian penyingkiran haba dari substrat ke gas telah dijalankan. PKC telah digunakan sebagai substrat dalam kajian ini. Diameter purata untuk PKC yang digunakan adalah 855µm. Kesan halaju gas, kelembapan gas dan ketinggian lapisan telah dikaji. Keputusan menunjukkan bahawa penyingkiran haba dari PKC ke gas adalah berkadar langsung dengan halaju gas dan berkadar songsang dengan kelembapan gas serta ketinggian lapisan. Penyingkiran haba yang cepat telah diperhatikan dalam 150 saat pertama dengan penurunan suhu sebanyak 30°C. Satu model matematik telah dihasilkan untuk menjangka data eksperimen. Di samping itu, kajian penyerapan air dari gas ke PKC telah dijalankan. Keputusan menunjukkan bahawa penyerapan air di PKC adalah berkadar terus dengan kelembapan gas dan berkadar songsang dengan halaju gas. Maximum kandungan air yang boleh diserap oleh PKC dalam keadaan eksperimen adalah 10% (w/w). Untuk operasi SSF, 10% kandungan air adalah terlalu rendah untuk aktiviti microorganisma. Maka, satu sistem penyiraman air telah dipasang untuk menambah air ke PKC. Satu model matematik telah dihasilkan untuk menjangka data eksperimen. Akhirnya, kesan halaju gas bagi penapaian pepejal PKC telah dikaji dengan menggunakan satu prototaip bioreaktor, di mana bioreaktor itu boleh digunakan sebagai bioreaktor lapisan terbendalir dan bioreaktor lapisan terpegun. Peningkatan tertinggi kepekatan gula penurunan adalah pada 0.17 m/s. Ia meningkat sebanyak 28%, daripada 14.55 mg mannose/g dry PKC pada mulanya ke 18.63 mg mannose/g dry PKC. Manakala kandungan hemicelulosa pula menurun sebanyak 10%.

TABLE OF CONTENTS

ΤΠΙ	E	I
DEC	LARATION	ii
АСК	NOWLEDGEMENT	
ABS	TRACT	iv
ABS	TRAK	v
TAB	LE OF CONTENTS	vi
LIST	T OF FIGURES	xi
LIST	T OF TABLES	xiv
NOM	IENCLATURE	xv
CHA	PTER 1: INTRODUCTION	1
1.1	INTRODUCTION	1
1.2	RESEARCH AIM	2
1.3	RESEARCH OBJECTIVES	3
1.4	SCOPE OF RESEARCH	3
1.5	SIGNIFICANCE OF RESEARCH	4
CHA	PTER 2: LITERATURE REVIEW	5
2.1	INTRODUCTION	5
2.2	PALM KERNEL CAKE	5
2.3	USAGES OR APPLICATION OF PKC	8
	2.3.1 Raw PKC as Feedstuff	8
	2.3.2 Fermented/Treated PKC as Feedstuff	12
	233 DKC as Substrate in Enzyme Production	14

2.4 SOLID STATE FERMENTATION	15
2.5 SELECTION OF B-MANNANASE PRODUCING MICROORGANISM	17
2.6 GENERAL ENGINEERING ASPECTS OF SSF BIOREACTOR	19
2.6.1 Heat Transfer Problem	19
2.6.2 Mass Transfer Problem	20
2.7 FLUIDIZED BED FERMENTER	21
2.7.1 The Phenomenon of Fluidization	22
2.7.2 Advantages of Fluidized Bed Fermenter	24
2.8 BIOREACTOR FOR SSF OF PKC	25
CHAPTER 3: METHODOLOGY AND EXPERIMENTAL SETUP	29
3.1 INTRODUCTION	29
3.2 LIST OF CHEMICALS AND APPARATUS	29
3.3 PARTICLE SIZE DISTRIBUTION OF PKC	29
3.4 DETERMINATION OF RAW PKC MOISTURE CONTENT	33
3.5 DETERMINATION OF PKC BULK DENSITY	34
3.6 DESIGN AND FABRICATION OF FLUIDIZED BED SOLID STATE	34
FERMENTER	
3.6.1 AUTOCAD Drawing of Fluidized Bed Solid State Fermenter	35
3.7 HYDRODYNAMIC STUDIES	42
3.7.1 Determination of Distributor Plate Pressure Drop $(\Delta P)_{DP}$	42
3.7.2 Standardization of Fluidized Bed Behaviour	42
3.7.3 Determination of U _{mf} using Total Pressure Drop Across	43
the Bed (ΔP) _t	
3.8 HEAT TRANSFER STUDIES	44
3.9 MASS TRANSFER STUDIES	45

vii

3.10	SOLID STATE FERMENTATION OF PKC	46
	3.10.1 Cultivation of Fungal Strain TW1	46
	3.10.2 Preparation of Inoculum	47
	3.10.3 Plate Count Method	47
	3.10.4 Solid State Fermentation of PKC in Fluidized Bed Fermenter	48
	3.10.5 Solid State Fermentation of PKC at Various Air Velocities	49
	3.10.6 Determination of Substrate Moisture Content	50
	3.10.7 Determination of Substrate pH	50
	3.10.8 Fungal Biomass Estimation	51
	3.10.9 Determination of Reducing Sugar Concentration	51
	3.10.10 Mannose Calibration Curve	52
	3.10.11 Dinitrosalicylic Acid (DNS) Method	53
	3.10.12 Acid Detergent Fiber (ADF) Analysis	54
	3.10.13 Neutral Detergent Fiber (NDF) Analysis UNIVERSITI MALAYSIA SABAH	55
СНАР	TER 4: RESULTS AND DISCUSSION	56
4.1	INTRODUCTION	56
4.2	CHARACTERIZATION OF PALM KERNEL CAKE	56
	4.2.1 Particle Size Distribution of PKC	56
	4.2.2 Raw PKC Moisture Content	57
	4.2.3 PKC Bulk Density	57
4.3	HYDRODYNAMIC STUDIES	58
	4.3.1 Determination of Pressure Drop Across the Distribution Plate	58
	$(\Delta P)_{DP}$ and PKC Bed $(\Delta P)_{b}$	
	4.3.2 Standardization of Fluidized Bed	58
	4.3.3 Determination of Experimental and Theoretical Minimum	59

viii

		Fluidization Velocity	
4.4	HEAT	TRANSFER STUDIES	65
	4.4.1	Effect of Superficial Air Velocity	65
	4.4.2	Effect of Air Relative Humidity	66
	4.4.3	Effect of Bed Height (H/D)	66
	4.4.4	Mathematical Modeling for Heat Transfer Studies	71
4.5	MASS	TRANSFER STUDIES	75
	4.5.1	Effect of Superficial Air Velocity	75
	4.5.2	Effect of Air Relative Humidity	76
	4.5.3	Effect of Bed Height (H/D)	76
	4.5.4	Mathematical Modeling for Mass Transfer Studies	80
4.6	SOLID	STATE FERMENTATION OF PKC	. 90
	4.6.1	Pure Culture of Fungal Strain TW1	90
	4.6.2	Inoculum Preparation	92
	4.6.3	Mannose and Glucosamine Calibration Curve	94
	4.6.4	Effect of Superficial Air Velocity for SSF of PKC	96
CHAI	PTER 5:	CONCLUSIONS AND RECOMMENDATIONS	108
REFE	RENCE	S	112
APPE	NDIX		
A 1	Data	for Particle Size Distribution of PKC	120
	A 1.1	Average PKC Particle Size Calculation	120
A 2	Data	for Raw PKC Moisture Content	121
	A 2.1	Raw PKC Moisture Content Calculation	121

ix

A 3	Data for PKC Bulk Density	122
	A 3.1 PKC Bulk Density Calculation	122
A 4	Data for Hydrodynamic Studies (CD-ROM)	123
	A 4.1 Bed Pressure Drop $(\Delta P)_{b}$ Calculation	123
A 5	Data for Heat Transfer Studies (CD-ROM)	124
	A 5.1 Theoretical Bed Temperature (T_b) Calculation	124
A 6	Data for Mass transfer Studies (CD-ROM)	125
	A 6.1 Mass Transfer Modeling Calculation	125
A 7	Data for SSF of PKC (<i>CD-ROM</i>)	126
	A 7.1 Reducing Sugar Concentration Calculation	126
	A 7.2 Glucosamine Concentration Calculation	128
	A 7.3 ADF and NDF Calculation	130
B 1	LIST OF PUBLICATIONS	131

UNIVERSITI MALAYSIA SABAH

х

LIST OF FIGURES

Figure No.		Page
Figure 2.1	Schematic Diagram of Some Microscale Processes That	17
	Occur During SSF	
Figure 2.2	Various Forms of Contacting of a Batch of Solids by Fluid	24
Figure 3.1	Schematic Diagram of a Fluidized Bed Solid State Fermenter	36
Figure 3.2	AUTOCAD Drawing of Fluidized Bed Solid State Fermenter	41
Figure 4.1	The Palm Kernel Cake (PKC) Particle Size Distribution	57
Figure 4.2	Typical Plot of Bed Pressure Drop Versus Air Velocity for	59
	River Sand Particles	
Figure 4.3	Typical Plot of Bed Pressure Drop Versus Air Velocity for	61
	855µm PKC Particles	
Figure 4.4	Typical Plot of Bed Height Versus Air Velocity for 855µm PKC	61
	Particles	
Figure 4.5	Typical Plot of Bed Pressure Drop Versus Air Velocity for	62
	655µm PKC Particles	
Figure 4.6	Typical Plot of Bed Height Versus Air Velocity for 655µm PKC	62
	Particles	
Figure 4.7	Typical Plot of Bed Pressure Drop Versus Air Velocity for	63
	363µm PKC Particles	
Figure 4.8	Typical Plot of Bed Height Versus Air Velocity for 363µm PKC	63
	Particles	
Figure 4.9	Heat Exchange Between PKC and Fluidizing Air for Various	68
	Superficial Air Velocities	
Figure 4.10	Heat Exchange Between PKC and Fluidizing Air for Various	69
	Air Relative Humidity	
Figure 4.11	Heat Exchange Between PKC and Fluidizing Air for Various	70
	Bed Heights	
Figure 4.12	Comparison of Theoretical and Experimental Bed	74
	Temperature	
Figure 4.13	Water Adsorption in PKC for Various Superficial Air Velocities	77
Figure 4.14	Water Adsorption in PKC for Various Air Relative Humidity	78

Figure 4 15	Water Adsorption in PKC for Various Bed Heights (H/D)	79
Figure 4.16	Adsorption of Water by PKC Particles	80
Figure 4 17	Froundlich Adsorption Isotherm	82
Figure 4.18	Experimental k Versus (a) Superficial Air Velocity II (b)	86
rigule 4.10	Air Polativo Humidity, H/H	00
Figuro 4 10	Craph lp(1 (Mw/Mp)/(Mw/Mp)) Vorcus Time	07
Figure 4.19	Graph In(1-(MW/Mp)/(MW/Mp)eq) Versus Time	07
Figure 4.20	Comparison of Rexp and R _{cal} for Mass transfer Modeling	90
Figure 4.21	Strain TM/1 (Magnification: 150%)	91
Figure 4.22	Strain TWT (Magnification: 150X)	91
Figure 4.23	Sporulated PDA Slant Culture or Strain TW1	92
Figure 4.24	Strain IWI Spore Suspension	93
Figure 4.25	Mannose and Glucosamine Calibration Curve	95
Figure 4.26	Novaspec II Spectrophotometer	95
Figure 4.27	Biomass Growth of TW1 and Reducing Sugar Concentration	97
	Profile During SSF of PKC at Superficial Air Velocity of	
	0.60m/s	
Figure 4.28	Schematic Drawing of The Filamentous Fungal Layer on a	98
	Flat Substrate	
Figure 4.29	Moisture Content and Fungal Biomass Growth Profile During	99
	SSF of PKC at Superficial Air Velocity of 0.60m/s	
Figure 4.30	Profile of Substrate pH During SSF of PKC at Superficial Air	100
	Velocity of 0.60m/s	
Figure 4.31	Biomass Growth of TW1 and Reducing Sugar Concentration	101
	Profile During SSF of PKC at Superficial Air Velocity of	
	0.10m/s	
Figure 4.32	Biomass Growth of TW1 and Reducing Sugar Concentration	101
	Profile During SSF of PKC at Superficial Air Velocity of	
	0.17m/s	
Figure 4 33	Color Changes of The Bed During SSE of PKC at Superficial	102
rigure noo	Air Velocity of 0.10 m/s and 0.17 m/s; (a) 0-1 day (b) 1-2	102
	$d_{1} = (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)$	
Figure 4.24	Maisture Content and Europal Biomaco Crowth Drofile During	102
Figure 4.34	Moisture Content and Fungal Biomass Growth Profile During	103
	SSF of PKC at Superficial Air Velocity of 0.10m/s	
Figure 4.35	Moisture Content and Fungal Biomass Growth Profile During	104
	SSF of PKC at Superficial Air Velocity of 0.17m/s	

xii

- Figure 4.36 Average Bed Temperature Profile During SSF of PKC at 106 Superficial Air Velocity of 0.10m/s
- Figure 4.37 Average Bed Temperature Profile During SSF of PKC at 106 Superficial Air Velocity of 0.17m/s
- Figure 4.38 Profile of Substrate pH During SSF of PKC at Superficial Air 107 Velocity of 0.10m/s
- Figure 4.39 Profile of Substrate pH During SSF of PKC at Superficial Air 107 Velocity of 0.17m/s

LIST OF TABLES

Table No.		Page
Table 2.1	Typical Chemical Composition and Energy Content of PKC	7
Table 2.2	Quality Characteristics of PKC Surveyed in 1989	8
Table 2.3	Published Data on Enzyme Production using PKC as Substrate	14
	in SSF	
Table 2.4	Advantages and disadvantages of SSF over SmF	15
Table 2.5	Main Groups of Microorganism Involved in SSF Processes	18
Table 2.6	Various Types of Bioreactors in SSF of PKC	27
Table 3.1	List of Chemicals	30
Table 3.2	List of Apparatus	31
Table 3.3	7 Types of Different PKC Particle Sizes	32
Table 3.4	Range of Variables in Heat Transfer Study	45
Table 3.5	Range of Variables in Mass Transfer Study	46
Table 4.1	Summary Table of The Experimental and Calculated U_{mf} in	64
	This Study	
Table 4.2	Physical Data Used for Heat Transfer Model Calculations	73
Table 4.3	Physical Data Used for Mass Transfer Model Calculations	88
Table 4.4	Results of TW1 Spore Concentration	93

NOMENCLATURE

Α	column cross section area, m ²
Ar	Archemedies number
CDa	specific heat of gas, J/kg.K
CD _s	specific heat of solid, J/kg.K
C _f	correction factor
Ca	concentration of absorbate in fluid, kmol/m ³
Cap	concentration of absorbate on particle, kmol/m ³
D _{AB}	diffusivity of water vapor in air, m ² /s
D	diameter of the column, cm
Dp	average diameter of the particle, m
g	acceleration due to gravity, m/s ²
Н	height of bed, cm
н	humidity, kg water vapor per kg dry air
Hs	saturation humidity, kg water vapor per kg dry air
Ka	adsorption coefficient
Kq	air to particle mass transfer coefficient, m/s
L	length of bed, m
ե	height of bubbling fluidized bed, m
Lm	height of fixed bed, m
Mw	weight of water, kg
M _{wt}	molecular weight of water, kg/kmol
Mw _{eq}	weight of water at equilibrium, kg
Mp	weight of particle, kg
(ΔP) _b	bed pressure drop, mmH ₂ O
$(\Delta P)_{DP}$	pressure drop across the distributor, mmH2O
(ΔP) _t	total pressure drop across the bed, mmH ₂ O
Re	particle Reynold's number
Remf	particle Reynold's number at minimum fluidization velocity
RH	relative humidity, %
Sh	Sherwood Number
Sp	surface area of a single particle, m ²
Tb	bed temperature, ⁰C

T _{bo}	initial bed temperature, ^o C		
T_{gi}	inlet air temperature, ^o C		
t	time, sec		
Up	volume of a single particle, m ³		
Ug	superficial air velocity, m/s		
U _{mf}	minimum fluidization velocity, m/s		
W	weight of the particles, kg		
3	fractional voidage		
٤ _f	void fraction in a fluidized bed as a whole		
٤m	void fraction in a fixed bed		
μ _g	viscosity of fluidizing medium, kg/m.s		
ρ _p	density of particle, kg/m ³		
ρ _b	bulk density, kg/m ³		
ρ _g	density of fluidizing medium, kg/m ³		
kg	kilogram		
g	gram		
mg	milligram		
hr	hour hour hour hour hour hour hour hour		
min	UNIVERSITI MALAYSIA SABAH		
S	second		
m	meter		
mm	millimeter		
μm	micron		
L	litre		
ml	milliliter		
⁰C	degree Celsius		
%	percent		
H/D	ratio of bed height to column diameter		
H/H _s	ratio of humidity to saturation humidity		
W/A	ratio of PKC weight to column cross section area		
v/w	volume per weight		
w/w	weight per weight		
DF	dilution factor		
gds	gram dry substrate		
0	gas oxygen		

PDA	potato dextrose agar
PKC	Palm kernel cake
SSF	solid state fermentation
SmF	submerged fermentation

INTRODUCTION

1.1 Introduction

Solid state fermentation (SSF) which involves growth of microorganism on moist solid substrates in the absence of free flowing water, has gained renewed attention over submerged fermentation for specific applications (Raghavarao, 2003). In recent years, some bioprocesses using SSF have been developed for the production of bulk chemicals and value-added products such as ethanol, single-cell protein (SCP), mushrooms, enzymes, organic acids, amino acids, and biologically active secondary metabolites (Soccol and Vandenberghe, 2003). There are many parameters that affect the quality of bio-products such as the particle characteristics of the substrate, contact between the substrate and the microbes, removal of metabolic heat from the substrate, diffusion of O_2 through the substrate, removal of byproduct gases, and maintenance of desired moisture in the substrate (Krishnaiah *et al.*, 2005).

While handling the SSF process in fermenter, there are three main engineering problems which include the removal of metabolic heat from the substrate, diffusion of O_2 and moisture content through the substrate, and heterogeneity of the substrate and inoculum. Heat accumulation in bioreactor during SSF is one of the major problems particularly in scale-up of bioreactor. In general, during SSF, a large amount of metabolic heat is evolved and its rate is directly proportional to the level of metabolic activity in the system (Robinson and Nigam, 2003). Usually the solid substrate used for SSF has low thermal conductivities. Hence, heat removal from the process could be very slow. Sometimes accumulation of heat may reach as high as 60 to 70 $^{\circ}$ C in the innermost region which affect the growth of microorganism (Hayes, 1977). The transfer of heat out of SSF system is closely related with the aeration which also supplies the O₂ and moisture content to the microorganism.

In order to overcome these mass and heat transfer problems of SSF process, fluidized bed solid state bioreactor was proposed to be used for SSF of PKC in which the particles move independently like a fluid and the heat and mass transfer coefficients are very high between particle to gas, bed to surface and surface to bed (Kunii and Levenspiel, 1991). Even though fluidized bed is one of the established reactors, the studies mentioned above are not available for the natural material like palm kernel cake (PKC).

1.2 Research Aim

The aim of this research is to develop a lab-scale fluidized bed bioreactor for the bioconversion of palm kernel cake (PKC) as poultry feed.

1.3 Research Objectives

The objectives of this research are:

- i. To develop a lab-scale fluidized bed fermenter.
- ii. To characterize PKC.
- iii. To determine the hydrodynamic parameters of fluidized bed.
- iv. To study mass and heat transfer operations of PKC in fluidized bed.
- v. To evaluate the performance of fluidized bed fermenter operated at different air velocity.

1.4 Scope of Research

The scopes of the research are:

- i. To fabricate a lab-scale fluidized bed fermenter.
- To measure the bulk density, moisture content and particle size distribution of PKC.
- iii. To determine experimentally the operating parameters such as distributor plate pressure drop, pressure drop across the bed and minimum fluidization velocity, and to calculate minimum fluidization velocity from model equation.
- iv. To study the effect of superficial air velocity, air relative humidity and bed height on water adsorption from air to PKC and to develop its mathematical model.

- v. To study the effect of superficial air velocity, air relative humidity and bed height on heat loss from PKC to fluidizing medium, air and to develop its mathematical model.
- vi. To evaluate the effect of superficial air velocity on SSF of PKC in the fluidized bed fermenter using fungal strain *Aspergillus flavus* in term of biomass growth, pH, moisture content, and food and feed analysis such as reducing sugar concentration and hemicelluloses content.

1.5 Significance of Research

Large scale process of SSF is limited by engineering problems as mentioned in the earlier section. Basic understanding of these limitations at laboratory level improves the design of reactor and enhances the efficiency of any SSF process. Systematic studies of the effect of various parameters on quality of SSF in the laboratory build up a data bank for handling industrial processes more efficiently. This research is an attempt in this direction.

This research is also important to produce a value-added local agro-industry residues, PKC for the potential bioconversion to poultry feed. From the economy point of view, it will save cost through reduction of import of feedstuffs at a cost of a billion Ringgits every year, by substituting the components of feedstuffs with treated PKC. In fact, the attempt to do SSF of PKC using fluidized bed fermenter is the first in SSF world. Hence, this research will become a pioneer and reference to future SSF work in fluidized bed fermenter using PKC as substrate.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews all the literature, data, theories that have been published, referred or applied in this research. First of all, introduction about PKC is given in Section 2.2. Secondly, the usages or applications of PKC are discussed in section 2.3. SSF and selection of β -mannanase producing microorganism are discussed in Section 2.4 and Section 2.5 respectively. Besides that, Section 2.6 discusses about the general engineering aspects of SSF bioreactor such as heat and mass transfer problem while handling SSF process. The advantages of fluidized bed fermenter are discussed in Section 2.7 and finally an overview of bioreactor for SSF of PKC is given in Section 2.8.

2.2 Palm Kernel Cake

Malaysia currently produces an annual quantity of 1.4 million tones of PKC as byproduct in the milling of palm kernel oil. The potential of PKC as feed for livestock have long been known. PKC can be fed to ruminant animals like cattle (Camoens, 1979), sheep (Hair-Bejo and Alimon, 1995) and also monogastric animal like pig (Rhule, 1996). And, for the last few years many researchers are interested to study on the possibility to feed PKC to poultry (Onwudlike, 1986) and also aquaculture (Ng,