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ABSTRACT 

Solid state fermentation (SSF) which involves growth of microorganism on moist 
solid substrates in the absence of free flowing water, has gained renewed attention 
over submerged fermentation for specific applications. During the SSF process in 
fermenter, there are three main engineering problems encountered such as the 
removal of metabolic heat from the substrate, diffusion of 02 and moisture through 
the substrate, and heterogeneity of the substrate and inoculum. A fluidized bed 
fermenter in which the particles move independently like a fluid was proposed to 
conduct SSF of PKC. Hydrodynamic studies showed that the experimental Umr for 
855µm, 655µm and 363µm PKC particles were 0.340 m/s, 0.205 m/s and 0.080 m/s, 
respectively, where as the Umr calculated using Wen and Yu correlation was 0.206 
m/s, 0.131 m/s, and 0.043 m/s. The discrepancy between experimental and 
theoretical values most probably due to the breakage of the PKC particles and the 
presence of shells with different density. Heat transfer studies have also been carried 
out. The results showed that the heat loss from PKC to air was very fast and 
increased with increase of air velocity. In contrary, heat loss from PKC to air was 
increased with decrease in air relative humidity and bed height. Throughout the 
study, rapid heat transfer from PKC to air was experimentally observed within the 
first 150 seconds with a temperature drop of 30°C. This indicated that the excellent 
heat transfer between palm kernel cake and air allows solid state fermentation of 
PKC without accumulation of metabolic heat in the fer1T1enter. A mathematical model 
for heat transfer between PKC and fluidizing medium was proposed which can 
predict the experimental data quite satisfactorily within an average error of ± 15%. 
Apart from heat removal, water adsorption on PKC from air to bed was carried out. It 
showed that the increase of adsorbed water in PKC was proportional to air relative 
humidity and inversely proportional to superficial air velocity. The maximum moisture 
content adsorbed by PKC under fluidization conditions was around 10% ( on dry 
basis). For SSF operation, 10% moisture content was too low for microbial growth. 
Therefore, a water dropping system was installed to add water on PKC to maintain 
the moisture content at required level. A mathematical model for mass transfer 
between PKC particle and fluidizing air was proposed which can predict the 
experimental data quite satisfactorily. Finally, the effect of superficial air velocity on 
SSF of PKC was studied in the prototype fermenter, which can be operated as 
fluidized bed and packed bed, using fungal strain Aspergil/us navus. The strain was 
isolated from PKC sample. The maximum increase of reducing sugar concentration 
was at 0.17 m/s. It increased about 28%, from 14.55 mg mannose/g dry PKC to 
18.63 mg mannose/g dry PKC. Meanwhile, the hemicellulose content reduced about 
10%. 



ABSTRAK 

PEMBANGUNAN LAPISAN TERBENDALIR SEBAGAI BIOREAKTOR 

SUBSTRAT PEPEJAL UNTUK PENUKARAN SISA KELAPA SAWIT SEBAGAI 

MAKANAN TERNAKAN 

V 

Penapaian pepeja/ telah menjadi satu alternatif yang menarik untuk menggantikan 
penapaian cecair walaupun penapaian pepeja/ mempunyai beberapa masalah 
kejuruteraan seperti penyingkiran haba metabo/isma, penghantaran oksigen dan 
kelembapan ke jarah, dan pencampuran jarah yang seragam. Bioreaktor /apisan 
terbendalir adalah sa!ah satu pilihan yang boleh mengatasi masa/ah tersebut. Dalam 
kertas penye!idikan ini, satu bioreaktor lapisan terbendalir telah direka. Kajian 
_hydrodinamik telah dija!ankan dan keputusannya menunjukkan Um,eksperimen untuk 
855µm, 655µm and 363µm saiz partikel PKC ada/ah 0.340 m/s, 0.205 m/s and 0.080 
m/s manakala Um, teori dari persamaan Wen and Yu adalah 0.206 m/s, 0.131 m/s, 
and 0.043 m/s. Perbezaan antara nilai eksperimen dan teori kemungkinan besar 
disebabkan oleh pemecahan PKC partike/ dan kehadiran tempurung kelapa sawit 
yang lain ketumpatan. Selain daripada kajian hydrodinamik, kajian penyingkiran 
haba dati substrat ke gas telah dijalankan. PKC telah digunakan sebagai substrat 
dalam kajian ini. Diameter purata untuk PKC yang digunakan adalah 855µm. Kesan 
halaju gas, kelembapan gas dan ketinggian lapisan .telah dikaji. Keputusan 
menunjukkan bahawa penyingkiran haba dari PKC ke gas adalah berkadar /angsung 
dengan ha/aju gas dan berkadar songsang dengan kelembapan gas serta ketinggian 
lapisan. Penyingkiran haba yang cepat telah diperhatikan dalam 150 saat pertama 
dengan penurunan suhu sebanyak 3rf C. Satu model matematik telah dihasilkan 
untuk menjangka data eksperimen. Di samping itu, kajian penyerapan air dari gas ke 
PKC telah dijalankan. Keputusan menunjukkan bahawa penyerapan air di PKC ada/ah 
berkadar terus dengan kelembapan gas dan berkadar songsang dengan halaju gas. 
Maximum kandungan air yang boleh diserap oleh PKC dalam keadaan eksperimen 
adalah 10% (w/w). Untuk operasi SSF, 10% kandungan air adalah terlalu rendah 
untuk aktiviti microorganisma. Maka, satu sistem penyiraman air te!ah dipasang 
untuk menambah air ke PKC Satu model matematik te!ah dihasilkan untuk 
menjangka data eksperimen. Akhirnya, kesan ha/aju gas bagi penapaian pepejal PKC 
telah dikaji dengan menggunakan satu prototaip bioreaktor, di mana bioreaktor itu 
boleh digunakan sebagai bioreaktor lapisan terbendalir dan bioreaktor lapisan 
terpegun. Peningkatan tertinggi kepekatan gula penurunan adalah pada 0.17 m/s. Ja 
meningkat sebanyak 28%, daripada 14.55 mg mannose/g dry PKC pada mulanya ke 
18.63 mg mannose/g dry PKC Manakala kandungan hemice/ulosa pu/a menurun 
sebanyak 10%. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

1 

Solid state fermentation (SSF) which involves growth of microorganism on moist 

solid substrates in the absence of free flowing water, has gained renewed attention 

over submerged fermentation for specific applications (Raghavarao, 2003). In recent 

years, some bioprocesses using SSF have been developed for the production of bulk 

chemicals and value-added products such as ethanol, single-cell protein (SCP), 

mushrooms, enzymes, organic acids, amino acids, and biologically active secondary 

metabolites (Soccol and Vandenberghe, 2003). There are many parameters that 

affect the quality of bio-products such as the particle characteristics of the substrate, 

contact between the substrate and the microbes, removal of metabolic heat from the 

substrate, diffusion of 02 through the substrate, removal of byproduct gases, and 

maintenance of desired moisture in the substrate (Krishnaiah et al., 2005). 

While handling the SSF process in fermenter, there are three main 

engineering problems which include the removal of metabolic heat from the 

substrate, diffusion of 02 and moisture content through the substrate, and 

heterogeneity of the substrate and inoculum. Heat accumulation in bioreactor during 

SSF is one of the major problems particularly in scale-up of bioreactor. In general, 

during SSF, a large amount of metabolic heat is evolved and its rate is directly 



2 

proportional to the level of metabolic activity in the system (Robinson and Nigam, 

2003). Usually the solid substrate used for SSF has low thermal conductivities. 

Hence, heat removal from the process could be very slow. Sometimes accumulation 

of heat may reach as high as 60 to 70 °c in the innermost region which affect the 

growth of microorganism (Hayes, 1977). The transfer of heat out of SSF system is 

closely related with the aeration which also supplies the 02 and moisture content to 

the microorganism. 

In order to overcome these mass and heat transfer problems of SSF process, 

fluidized bed solid state bioreactor was proposed to be used for SSF of PKC in which 

the particles move independently like a fluid and the heat and mass transfer 

coefficients are very high between particle to gas, bed to surface and surface to bed 

(Kunii and Levenspiel, 1991). Even though fluidized bed is one of the established 

reactors, the studies mentioned above are not available for the natural material like 

palm kernel cake (PKC). 

1.2 Research Aim 

The aim of this research is to develop a lab-scale fluidized bed bioreactor for the 

bioconversion of palm kernel cake (PKC) as poultry feed. 



1.3 Research Objectives 

The objectives of this research are: 

i. To develop a lab-scale fluidized bed fermenter.

ii. To characterize PKC.

iii. To determine the hydrodynamic parameters of fluidized bed.

iv. To study mass and heat transfer operations of PKC in fluidized bed.

3 

v. To evaluate the performance of fluidized bed fermenter operated at different

air velocity.

1.4 Scope of Research 

The scopes of the research are: 

i. To fabricate a lab-scale fluidized bed fermenter.

ii. To measure the bulk density, moisture content and particle size distribution of

PKC.

iii. To determine experimentally the operating parameters such as distributor

plate pressure drop, pressure drop across the bed and minimum fluidization

velocity, and to calculate minimum fluidization velocity from model equation.

iv. To study the effect of superficial air velocity, air relative humidity and bed

height on water adsorption from air to PKC and to develop its mathematical

model.
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v. To study the effect of superficial air velocity, air relative humidity and bed

height on heat loss from PKC to fluidizing medium, air and to develop its

mathematical model.

vi. To evaluate the effect of superficial air velocity on SSF of PKC in the fluidized

bed fermenter using fungal strain Aspergillus flavus in term of biomass

growth, pH, moisture content, and food and feed analysis such as reducing

sugar concentration and hemicelluloses content.

1.5 Significance of Research 

Large scale process of SSF is limited by engineering problems as mentioned in the 

earlier section. Basic understanding of these limitations at laboratory level improves 

the design of reactor and enhances the efficiency of any SSF process. Systematic 

studies of the effect of various parameters on quality of SSF in the laboratory build 

up a data bank for handling industrial processes more efficiently. This research is an 

attempt in this direction. 

This research is also important to produce a value-added local agro-industry 

residues, PKC for the potential bioconversion to poultry feed. From the economy 

point of view, it will save cost through reduction of import of feedstuffs at a cost of a 

billion Ringgits every year, by substituting the components of feedstuffs with treated 

PKC. In fact, the attempt to do SSF of PKC using fluidized bed fermenter is the first 

in SSF world. Hence, this research will become a pioneer and reference to future SSF 

work in fluidized bed fermenter using PKC as substrate. 
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This chapter reviews all the literature, data, theories that have been published, 

referred or applied in this research. First of all, introduction about PKC is given in 

Section 2.2. Secondly, the usages or applications of PKC are discussed in section 2.3. 

SSF and selection of �-mannanase producing microorganism are discussed in Section 

2.4 and Section 2.5 respectively. Besides that, Section 2.6 discusses about the 

general engineering aspects of SSF bioreactor such as heat and mass transfer 

problem while handling SSF process. The advantages of fluidized bed fermenter are 

discussed in Section 2.7 and finally an overview of bioreactor for SSF of PKC is given 

in Section 2.8. 

2.2 Palm Kernel Cake 

Malaysia currently produces an annual quantity of 1.4 million tones of PKC as by­

product in the milling of palm kernel oil. The potential of PKC as feed for livestock 

have long been known. PKC can be fed to ruminant animals like cattle (Camoens, 

1979), sheep (Hair-Beja and Alimon, 1995) and also monogastric animal like pig 

(Rhule, 1996). And, for the last few years many researchers are interested to study 

on the possibility to feed PKC to poultry (Onwudlike, 1986) and also aquaculture (Ng, 


