PHOTODEGRADATION OF MALACHITE GREEN OXALATE (MGO) BY FENTON-LIKE AND PHOTO-FENTON-LIKE SYSTEMS

YONG SOON HO

DISSERTATION SUBMITTED AS PARTIAL FULFILMENT FOR THE DEGREE OF BACHELOR OF SCIENCE HONOURS

INDUSTRIAL CHEMISTRY PROGRAMME SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH

2005

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

· BORANG PE	NGESAHAN STATUS TESIS@
UDUL: ANTODEGRADATION OF	MAJACHITE GREEN. OXALATE (MGO)
BY FENTON-LIKE AND) PHOTO-FENTON-LIKE SYSTEMS
jazah: SARJANA MUDA SAINS	2
SESI PEN	IGAJIAN: 2002 - 2005
aya YONG SOON HD	
	(HURUF BESAR) Doktor Falsafah)* ini disimpan di Perpustakaan Universiti naan seperti berikut:
	a dibenarkan membuat salinan untuk tujuan pengajian sahaja. nan tesis ini sebagai bahan pertukaran antara institusi pengajian (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	Disahkan oleh
(TANDATANGAN PENULIS)	(TANDATANGAN PUSTAKAWAN)
lamat Tetap: 178 WIJAYA PARK.	Dr. Mashitch
OTA WNABAU, SABAH.	Nama Penyelia

'ATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, etau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

DECLARATION

I declare that this thesis is my original work except for quotations and summary that been cited in reference.

March 2005

YONG SOON HO HS 2002-3790

Manst.

_

1. SUPERVISOR

(MR. MOH PAK YAN)

2. EXAMINER 1

(PROF. MADYA DR. MARCUS JOPONY)

3. EXAMINER 2

(EN. COLLIN GLEN JOSEPH)

4. DEAN

(ASSOC. PROF. DR. AMRAN AHMED)

aup 1114/12

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my project supervisor, Mr. Moh Pak Yan for his guidance and precious information along the progress of project I and project II in order to fulfill my qualification for Degree of Science and Technology in Industrial Chemistry.

Besides that, I would like to thank Professor Dr. Marcus Jopony as well because organized the work schedule, timetable for the progress of our final project and inform us about the essential parts of the project in class. I also not forget to thank laboratory assistant Mr. Sani and Mr. Muhin for their commitment during my laboratory work.

Lastly, I would like to thank my family, all my friends and course mates who have giving important advice and moral support to me in effort to complete this project.

ABSTRACT

The effect of operational parameters, namely Fe^{3+} and UV light on the degradation of MGO in Fenton-like (Fe^{3+}/H_2O_2) and photo-Fenton-like ($UV/Fe^{3+}/H_2O_2$) systems were investigated. The Fe^{3+} concentration was varied to give different Fe^{3+} : H_2O_2 ratio (1:20, 1:40, 1:100, 1:200 and 1:400). The degradation of MGO was followed by measuring the absorbance at λ =365 nm. The results showed that higher concentration of Fe³⁺ gives the higher degradation of MGO. On the other $Fe^{3+}/H_2O_2/UV$ system showed higher degradation degree if compared to Fe^{3+}/H_2O_2 system.

V

ABSTRAK

Kesan parameter operasi iaitu Fe³⁺ dan cahaya UV telah diuji terhadap tahap degradasi bagi MGO dengan menggunakan sistem Fenton-like (Fe³⁺/H₂O₂) dan system foto-Fenton-like (UV/ Fe³⁺/H₂O₂). Pelbagai kepekatan Fe³⁺ telah digunakan untuk memberikan nisbah Fe³⁺: H₂O₂ yang berbeza (1:20, 1:40, 1:100, 1:200 dan 1:400). Degradasi MGO adalah diikuti dengan pengukuran nilai penyerapannya pada λ =365 nm. Keputusan menunjukkan bahawa semakin tinggi kepekatan ion Fe³⁺, semakin tinggi penguraian dan pelunturan larutan MGO. Dalam pada itu, sistem Fe³⁺/H₂O₂/UV menunjukkan kesan penguraian yang lebih tinggi jika dibandingkan dengan sistem Fe³⁺/H₂O₂.

CONTENTS

			Page
TITL	E OF T	HESIS	i
DEC	LARAT	TION	ii
VER	IFICAT	ION	iii
ACK	NOWL	EDGEMENT	iv
ABS	TRACT		v
ABS	TRAK		vi
CON	TENTS		vii
LIST	OF TA	BLES	x
LIST	OF FIC	GURES	xi
LIST	OF PH	OTOGRAPHS	xiii
LIST	OF SY	MBOLS, UNITS AND ABBREVIATIONS	xiv
CHA	PTER1	INTRODUCTION	
1.1	An ov	verview on treatment of textile wastewater	1
1.2	Objec	tive	3
1.3	Scope	of Research	4
CHA	PTER 2	2 LITERATURE REVIEW	
2.1	Colou	ır	5
	2.1.1	Photon Absorption By Molecules	6
	2.1.2	Spectroscopy: UV-visible Absorption	9
2.2	Dyes		11
	2.2.1	Chromophore	13
	2.2.2	Auxochrome	14
	2.2.3	Basic Dyes	14
	2.2.4	Triphenylmethane Dyes	15
	2.2.5	Malachite Green Oxalate Dye	16
2.3	Waster	water Treatment	17
	2.3.1	Conventional Methods	20
2.4	Adva	nced Oxidation Processes, AOPs	22

vii

2.4.1	Fenton's Reaction	22
2.42	Fenton-like Reaction	26
2.4.3	Photo Assisted Fenton's Reaction	27
2.4.4	Photo-Fenton Reaction Pathways	29
2.4.5	Photo-Fenton-like Reaction	31

CHAPTER 3 MATERIALS AND METHODS

3.1	Introd	uction	33
3.2	Chemi	cal Reagents	34
3.3	Appara	atus	34
3.4	Prepar	ation of Aqueous Solution and Chemical Reagent	35
	3.4.1	Malachite Green Oxalate (MGO) Stock Solution	35
	3.4.2	Malachite Green Oxalate (MGO) Reaction Solution	36
	3.4.3	Dilution of Stock Solution for Calibration	37
	3.4.4	Fenton-like's Reagent	37
	3.4.5	H ₂ O ₂ Concentration	38
	3.4.6	Ferric Stock Solution	38
	3.4.7	Fe ³⁺ Concentration	38
3.5	Calibr	ation Curve	39
3.6	Metho	dology	40
	3.6.1	Degradation of MGO Solution by Fe3+/H2O2 and	40
		UV/Fe ³⁺ /H ₂ O ₂ Systems	
3.7	Analy	sis	41
	a.	Degradation Degree of MGO	41
	b.	Kinetic Evaluation	42
CHA	PTER 4	RESULTS AND DISCUSSION	
4.1	Effec	t of Fe ³⁺ on Degradation Degree of Malachite Green Oxalate	43
	(MG	D) Solution in Fenton-like (Fe ³⁺ /H ₂ O ₂) and Photo-Fenton-like	
	(Fe ³⁺	/H ₂ O ₂ /UV) Systems	

4.2 Effect of UV Light in Photo-Fenton-like($Fe^{3+}/H_2O_2/UV$) System 47

viii

4.3 Kinetics of Malachite Green Oxalate (MGO) Solution Degradation 53 in Fenton-like(Fe³⁺/H₂O₂) and Photo-Fenton-like (Fe³⁺/H₂O₂/UV) Systems

CHAPTER 5CONCLUSION5.1Conclusion565.2Future Works57REFERENCES68APPENDIX65

ix

LIST OF TABLES

Table Nur	nbers	Page
Table 2.1	Classification of Dyes	12
Table 2.2	Malachite Green Dye	17
Table 2.3	The batch-dyeing process and its potential water pollutants	19
Table 2.4	Various oxidation species and their standard electrode potential	23
Table 3.1	$[Fe^{3+}]$ and $[H_2O_2]$ needed in the experiment	39
Table 4.1	The R^2 value for each of the composition of Fe^{3+} : H_2O_2 ratio for	55
	Photo- Fenton-like (Fe ³⁺ /H ₂ O ₂ /UV) and Fenton-like (Fe ³⁺ /H ₂ O ₂)	
	systems	

LIST OF FIGURES

Figure Nun	nbers	Page
Figure 2.1	The excitation process	7
Figure 2.2	Electronic energy levels and transitions	8
Figure 2.3	Reaction pathways of the Photo-Fenton process	30
Figure 2.4	A possible mechanism of production of hydroxyl radicals and the cycling of ferric/ferrous ions.	32
Figure 3.1	The molecular structure of Malachite Green dye molecule	34
Figure 4.1	Degradation degrees of MGO solution with different compositions of Fe^{3+} : H ₂ O ₂ ratio in $Fe^{3+}/H_2O_2/UV$ system for 120 minutes [(a) 1:20, (b) 1:40, (c) 1:100, (d) 1:200 and (e) 1:400] Note: The concentration of H ₂ O ₂ was fixed at 1x10 ⁻³ mol/L).	45
Figure 4.2		45
Figure 4.3	Degradation degrees of MGO solution with Fe^{3+} : H ₂ O ₂ composition at 1:20 for 120 minutes.	48
Figure 4.4	Degradation degrees of Malachite Green solution with Fe^{3+} : H ₂ O ₂ composition at 1:40 for 120 minutes.	48
Figure 4.5	Degradation degrees of MGO solution with Fe^{3+} : H_2O_2 composition at 1:100 for 120 minutes.	49
Figure 4.6	Degradation degrees of MGO solution with Fe ³⁺ : H ₂ O ₂ composition at 1:200 for 120 minutes.	49
Figure 4.7	Degradation degrees of MGO solution with Fe^{3+} : H_2O_2 composition at 1:400 for 120 minutes.	50
Figure 4.8	Degradation degrees at different compositions of Fe^{3+} : H_2O_2 ratio at 120 minutes contact time under $Fe^{3+}/H_2O_2/UV$ and Fe^{3+}/H_2O_2 ($a = 1:20$, $b = 1:40$, $c = 1:100$, $d = 1:200$ and $e = 1:400$).	51

- Figure 4.9 Graph showing $\ln(C_0/C_t)$ against time of MGO dissociation54for various Fe^{3+} : H_2O_2 composition under $Fe^{3+}/H_2O_2/UV$ system54(a = 1:20, b = 1:40, c = 1:100, d = 1:200 and e = 1:400).54Figure 4.10 Graph showing $\ln(C_0/C_t)$ against time of MGO dissociation54
- Figure 4.10 Graph showing $\ln(C_0/C_t)$ against time of MGO dissociation For various Fe³⁺: H₂O₂ composition under Fe³⁺/H₂O₂ system (a = 1:20, b = 1:40, c = 1:100, d = 1:200 and e = 1:400).

xii

LIST OF PHOTOGRAPHS

Photograph Numbers	Page
Photo 3.1 UV-Visible Spectrophotometer, Cary 50 Bio. Model	35
Photo 3.2 The apparatus setup of photo-Fenton process	40

LIST OF SYMBOLS, UNITS AND ABBREVIATIONS

MGO	Malachite Green oxalate
%	percentage
AOPs	advanced oxidation processes
$\mathrm{Fe}^{3+}/\mathrm{H}_2\mathrm{O}_2$	Fenton-like system
$Fe^{3+}/H_2O_2/UV$	photo-Fenton-like system
Fe ³⁺	ferric ion
H_2O_2	hydrogen peroxide
•OH	hydroxyl radical
UV	ultra-violet light source
nm	nanometer
ml	millilitre
Abs	absorbance
%D _{Abs}	percentage of degradation degree
mol/L	mole per litre
g/L	gram per litre
Kg/L	kilogram per litre
μL	micro litre
mg	milligram
λ	wavelength

CHAPTER 1

INTRODUCTION

1.1 An Overview on Treatment of Textile Wastewater

Wastewaters from textile and dye industries are highly coloured with significant amount of auxiliary chemicals. The discharge of these wastewater introduced intensive colour and toxicity to aquatic environment causing serious environmental problem (Muruganandham and Swaminathan, 2004).

Many conventional wastewater treatment methods such as flocculation by chemical reagent, activated carbon absorption and biological treatment had been used for treating the textile waste effluents but becoming ineffective or merely transfer the dye from water to solid. Hence, the advanced oxidation processes (AOPs) have been proposed in recent years as alternatives to the conventional treatment methods (Ince and Tezcanli, 1999).

Advanced oxidation processes (AOPs) is one of the chemical oxidation process that offers a highly reactive, non-specific oxidant namely hydroxyl radicals (•OH), capable of destroying wide range of organic pollutants in water and wastewater (Kavitha and Palanivelu, 2005). Ince and Tezcanli (1999), reported that the advantages of AOPs over conventional chemical oxidation processes is due to the absence of kinetic limitations, and the generation of highly reactive free radicals, which are 10^6 to 10^9 times faster than the strongest chemical oxidant like ozone and hydrogen peroxide.

Fenton's reagent is the mixture of H_2O_2 and ferrous ion (Fe²⁺), that able to generate hydroxyl radicals (Neyens and Baeyens, 2002). Fe³⁺ can also react with H_2O_2 in the so-called Fenton-like reaction regenerating Fe²⁺ and thus, supporting the Fenton process (Torrades *et al.*, 2003). Arslan-Alaton and Gurses (2004), stated that the reaction of H_2O_2 with ferric (Fe³⁺) and ferrous (Fe²⁺) iron in acidic aqueous solutions which are among the most common homogeneous systems and potential sources of hydroxyl generation.

Fenton-like reaction offer a cost effective source of hydroxyl radicals and it is easy to operate and maintain if compare to the other AOPs (Neamtu *et al.*, 2003). According to Lee *et al.* (2003), the Fenton reaction (Fe^{2+}/H_2O_2) and Fenton-like reaction ($Fe^{3+}/$ excess H_2O_2), have been widely applied in the treatment of nonbiodegradable wastewater in the field of advanced oxidation processes (AOPs). However, Fenton systems (Fenton reaction and Fenton-like reaction) have two limitations, there are large production of iron sludge and slow reduction of ferric ion

by H₂O₂. So, illumination of the system by UV-visible was suggested to overcome the limitations of the Fenton system.

Photo-Fenton ($Fe^{2+}/H_2O_2/UV$) and Photo-Fenton-like ($Fe^{3+}/H_2O_2/UV$) systems is one of the advanced oxidation processes (AOPs), where ion salts serves as photocatalysts and H_2O_2 as an oxidizing agent (Ghaly *et al.*, 2001). Fe^{3+} catalyses hydrogen peroxide decomposition. In the absence of light (Fenton-like system) and of complexion ligands other than water, the mechanism of H_2O_2 decomposition in acidic solution involves the formation of hydroperoxyl radicals (HO_2 •) and •OH. Upon irradiation by UV (photo-Fenton-like system), Fe^{3+} can promote the photooxidation of organic compounds. The positive effect of UV irradiation on the degradation rate include the photolysis of Fe^{3+} that leading to the production of •OH and Fe^{2+} (Arslan-Alaton and Gurses, 2004).

1.2 Objective

Fenton-like system can treat the effluents from textile industry with effectively. Hence the objectives of my study are:

- a. To evaluate the effect of Fe³⁺ towards the degradation of Malachite Green
 Oxalate (MGO) of Fenton-like and Photo-Fenton-like systems.
- b. To compare the effect of UV towards the degradation of Malachite Green Oxalate (MGO) between Fenton-like and Photo-Fenton-like systems.

1.3 Scope of Research

The scope of my research is to examine the effect of Fe^{3+} in Fenton-like (Fe^{3+}/H_2O_2) and Photo-Fenton-like ($Fe^{3+}/H_2O_2/UV$) systems over Malachite Green Oxalate solution (MGO), a basic dye solution. The experiment was carried out in lab-scale using a cylindrical photo-reactor (Duran's Pyrex, 400ml in capacity) with and without the presence of UV irradiation. Malachite Green Oxalate M6880/Sigma solution was used as a simulated textile dyeing effluent. The performances of the oxidative system in various Fe^{3+} concentration were evaluated by UV-Visible analysis of the samples withdrawn from the reservoir periodically. Graphs of the degradation degree against reaction time and also ln Absorption against reaction time will be plotted to evaluate the degree of the degradation and order of the chemical reactions.

CHAPTER 2

LITERATURE REVIEW

2.1 Colour

White light can be separated into its various colour using a glass prism by the reflection process. Light of different colours travels at different speeds through the prism. Violet light travels most slowly and has the largest angle of deviation relative to the beam incident on the prism face, whereas red light travels the faster and has the smaller angle of deviation (Hollas, 2002).

The electromagnetic spectrum extends far beyond both the red and violet, and the various regions of the spectrum are characterized by their wavelength. The visible region constitutes only a relatively minor portion of the electromagnetic spectrum. The extent of the visible region of the electromagnetic spectrum is approximately 350 nm (violet) to 750 nm (red). The reason why the visible region assumes such great importance is because the human eyes is uniquely sensitive to it (Hollas, 2002).

Gases, liquids or solids can completely, partly, or not at all absorb or reflect the light. When a coloured object is illuminated by white light (which constituted by violet, indigo, blue, green, yellow, orange and red lights), certain lights with the particular wavelengths will be absorbed and the reflected lights that represent the colour of the object will reach the retina of a normal eye and finally observed by human as a coloured object. *White object* referred to the object that reflect all visible light in a diffuse way and with complete reflectance. Contrary, if the object absorbs all visible light, also known as white light, we recognize it as *black object* (Moh, 2002).

Collier and Helen (1999) stated that the Munsell Colour System categorizes colour on the basis of three attributes, there are *hue, value, and chroma*. Hue is the quality distinguishes one colour from another, such as red from blue or yellow from green. The terms red, blue, green, yellow, and so forth are hue names. Value is the lightness and darkness of a coloured surface. The value designation ranges from one (very dark) to nine (very light), while the nonexistent absolute black and absolute white are zero and ten, respectively. Chroma is the strength of the colour. It is also designated by number. A high chroma colour is usually referred to a s a bright colour, and a low chroma may be described as dull.

2.1.1 Photon Absorption By Molecules

A qualitative picture of the absorption of radiation can be obtained by considering the absorption of light in the visible region. We "See" things because they transmit or reflect only a portion of the light in the visible region. When white light, which contains the whole spectrum of wavelengths in the visible region is passed through an

object, the object will absorb certain of the wavelengths, leaving the unabsorbed wavelengths to be transmitted. These transmitted wavelengths will be seen as a colour (Christian, 1994)

A molecule can absorb light energy whether in rotational transition, electronic transition or vibrational transition. Rotational and vibrational transitions are associated with a polyatomic molecule with covalent bonds. The overall energy associated with a molecule is given by (Christine, 1994):

Internal energy,
$$E = E_{rotational} + E_{vibrational} + E_{electronic}$$
 (2.1)

Definite amounts of these three types of energies are absorbed by a molecule. This is called quantized energy. By absorption of energy, the molecule move from ground state (E_0) to excited state (E_1) (Christian, 1994). Figure 2.1 shows the excitation process of a molecule from ground state to excited state.

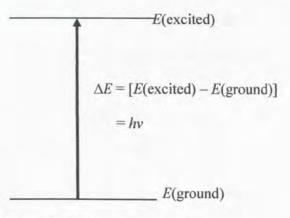


Figure 2.1 The excitation process

The colour appearance of dyes and pigments are basically explainable by the theory of photon absorption in the visible and ultraviolet region, which is a field of quantum chemistry study. A molecule in its ground (unexcited) state will absorb a quantum of light energy known as photon, and transferred to a higher energy state so called the excited state (Suppan, 1994; Harvey, 2000). Generally, the most probable transition is from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). The energy differences between electronic levels in most molecules vary from 125 to 650 kJ/mole (Pavia *et al.*, 1996).

Pavia *et al.*, (1996) stated that for most molecules, the lowest-energy occupied molecular orbitals are the σ bonds. The π orbitals lie at somewhat higher energy levels, and orbitals that hold unshared pairs, the nonbonding (n) orbitals, lie at even higher energies. The occupied, or anti-bonding orbitals (π^* and σ^*), are the orbitals of highest energy. Figure 2.2 shows a typical progression of electronic energy levels.

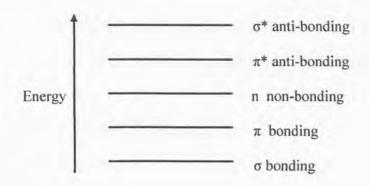


Figure 2.2 Electronic energy levels and transitions

In general, colourless organic substances absorb radiation in the ultraviolet, relatively high energies being required to raise the molecule from the ground state E_0

to the excited state E_1 . When ultraviolet or visible radiation is absorbed, an n, σ or π electron is (in ground state) promoted to occupy an empty π^* and σ^* anti-bonding orbital (in excited state), the wavelength of the absorbed energy is equal to the energy difference, ΔE (Moh, 2002).

According to Quantum theory, light is composed of discrete particles called quanta or photons that carry amount of energy E. The relationship between wavelength and frequency can be depicted by the following formula (Atkins, 2001: Anderson, 1994):

$$\lambda v = c \text{ (In vacuum)} \tag{2.2}$$

Let energy transformation, $\Delta E = E_1 - E_0$, then,

$$=hv$$
 (2.3)

$$= hc / \lambda$$
 (2.4)

Where E_1 is the energy of the higher state and E_0 the energy of the lower state. λ resembles the wavelength of the absorbed radiation, *c* is the velocity of light (3.0 x 10⁸ ms⁻¹), *v* is the frequency and *h* represented the Plank's constant (6.63 x 10⁻³⁴ Js).

2.1.2 Spectroscopy: UV-visible Absorption

The spectroscopy of UV-visible absorptions of an organic compound is related with the chemical bond and substituent. Interpretation of the information provided by UVvisible spectra, Infrared spectra (IR) and Nucleus Magnetic Resonance spectra

REFERENCES

- Alaton, I.A., Balcioglu, I.A. and Bahnemann, D.W., 2002. Advanced oxidation of a reactive dyebath effluent: comparison of O₃, H₂O₂/UV-C and TiO₂/UV-A processes.*Water Research* 36, 1143-1154.
- Anderson, W.C., 1994. Innovative Site Remediation Technology Volume 2: Chemical Treatment. ed. American Academy of Environmental Engineers, USA.
- Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., 1999. Advanced oxidation process (AOP) for water purification and recovery. *Catalysis Today* **53**, 51-59.
- Arslan, I. and Balcioğlu, I. A., 1999. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. *Dyes and Pigments* 43, 95-108.
- Arslan, I. and Balcioğlu, I. A., and Bahnemann, D. W., 2000. Advanced chemical oxidation of reactives dyes in simulated dyehouse effluents by frrioxalate-Fenton/UV-A and TiO₂/UV-A processes. *Dyes and Pigments* 47, 207-218.
- Arslan-Alaton, I. and Gurses, F., 2004. Photo-Fenton and Photo-Fenton-like oxidation of Procaine Penicillin G formulation effluent. *Journal of Photochemistry and Photobiology A: Chemistry* 165, 165-175.
- Atkins, P.W., 2001. Physical Chemistry. 6th ed.(revised). Oxford University Press, Oxford.
- Augugliaro, V., Baiocchi, C., Prevot, A.B., Garcia-Lopez, E., Loddo, V., Malato, S., Marci, G., Palmisano, L., Pazzi, M. and Pramauro, E., 2002. Azo-dyes photocatalytic degradation in aqueous suspension of TiO₂ under solar irradiation. *Chemosphere* 49, 1223-1230.

- Azmi Aris, Razman Salim and Sanagi, M., 1998. Treatment of textile finishing wastewater using Fenton's reagent. *Journal of Civil Engineering* 11, 35-45.
- Carr, C.M., 1995. Chemistry of The Textiles Industry. Blackie Academic & Professional, London.
- Christian, G.D., 1994. Analytical Chemistry. 5th ed. John Wiley & Son, Inc., United States of America.
- Cisneros, R.L., Espinoza, A.G. and Litter, M.I., 2002. Photodegradation of an azo dye of the textile industry. *Chemosphere* **48**, 393-399.
 - Collier, B.J. and Helen, H.E., 1999. *Textile Testing and Analysis*. Prentice Hall. Upper Saddle River, New Jersey.
 - Corbman, B.P., 1983. Textiles Fiber to Fabric. 6th ed. McGraw-Hill. Prentice Hall Inc., Singapore.
 - Dean, J.A., 1995. Analytical Chemistry Handbook. McGraw-Hill Inc., USA
 - Dianne, N.E., 1995. A World of Colour: Investigating The Chemistry of Vat Dyes. In: Journal of Chemical Education Vol. 72 No.8. United State of America.
 - Fallmann, H., Krutzler, T., Bauer, R., Malato, S. and Blanco, J., 1999. Application of the Photo-Fenton method for treating water containing perticides. *Catalysis Today* 54, 309-319.
 - Feng, X., Ding, S., Tu, J., Wu, F. and Deng, N., 2004. Degradation of estrone in aqueous solution by photo-Fenton system. Science of the Total Environment Article in press.
 - Fessenden, R. J. and Fessenden, J. S., 1990. Organic Chemistry. 4th ed. Brooks/Cole Publishing Company, Pacific Grove, Califonia.

- Ghaly, M.Y., Härtel, G., Mayer, R. and Haseneder, R., 2001. Photochemical oxidation of *p*-chlorophenol by UV/ H₂O₂ and photo-Fenton process. A comparative study. *Waste Management* 21, 41-47.
- Ghiselli, G., Jardim, W. F., Litter, M. I. and Mansilla, H. D., 2004. Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. *Journal of Photochemistry and Photobiology A: Chemistry* 167, 59-67.
- Gogate, P. R. and Pandit, A. B., 2004. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advanced in Environmental Research 8, 501-551.
- Goi, A. and Trapido, M., 2002. Hydrogen peroxide photolysis, Fenton reagent and photo- Fenton for the degradation of nitrophenols : a comparative study. *Chemosphere* 46, 913-922.
- Hans, G.V., 1995. Industrial Colour Testing: Fundamental and Techniques. VcH Verlagsgesellschaft mbH, D-6940 Weinheim (Federal Republic of Germany).
- Harvey, D., 2000. Modern Analytical Chemistry. Ed. The McGraw-Hill Companies, Inc., Singapore.
- He, J., Ma, W., He, J., Zhao, J. and Yu, J.C., 2002. Photooxidation of azo dye in aqueous dispersions of H₂O₂/α-FeOOH. *Allpied Catalysis B: Environmental* 39, 211-220.
- Hollas, J.M., 2002. *Basic Atomic and Molecular Spectroscopy*. The Royal Society of Chemistry, New York.
- Ince, N. H. and Tezcanli, G., 1999. Treatability of textile dye-bath effluents by advanced oxidation : preparation for reuse. *Water Science and Technology* 40, 183-190.

- Johnston, P. and Santillo, D., 2002. Chemical Usage in Aquaculture: Implication for Residues in Market Products. Department of Biological Sciences, University of Exeter, UK.
- Kang, S. F., Liao, C.H. and Po, S.T., 2000. Decolorization of textile wastewater by photo-fenton oxidation technology. *Chemosphere* **41**, 1287-1294.
- Kavitha, V. and Palanivelu, K., 2005. Degradation of nitrophenols by Fenton and photo-Fenton processes. Journal of Photochemistry and Photobiology A: Chemistry 170, 83-95.
- Keusch, P., 2003. Kinetic: Fading of Triphenylmethane Dyes Pseudo First Order Reaction. University of Regensburg.
- Lee, Y., Lee, C. and Yoon, J., 2003. High temperature dependence of 2,4dichlorophenoxyacetic acid degradation by Fe³⁺/H²O² system. *Chemosphere* **51**, 963-971.
- Lee, Y., Joeng, J., Lee, C., Kim, S. and Y, J., 2003. Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H₂O₂ process. *Chemosphere* 51, 901-912.
- Malik, P.K. and Saha, S.K., 2002. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. *Separation and Purification Technology*.
- Maletzky, P. and Bauer, R., 1998. The photo-Fenton method degradation of nitrogen containing organic compounds. *Chemosphere* **37**, 899-909.
- McGinnis, B. D., Adams, V. D. and Middlebrooks, E. J., 1999. Degradation of Ethylene Glycol in photo-Fenton system. *Water Research* 34, 2346-2354.
- Moh, P.Y., 2002. Photooxidative Degradation of Sumfix Supra Blue BRF in Titania-Assisted and Ozone-Assisted Systems. Universiti Teknologi Malaysia, Sekudai

- Moh, P. Y., Razak Ali, Wan Azelee Wan Abu Bakar and Azmi Aris, 2003. Degradation of textile azo by titania-assisted and ozone-assisted oxidation systems. Universiti Malaysia Sabah, Kota kinabalu.
- Muruganandham, M. and Swaminathan, M., 2004. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. *Dyes and Pigments* 63, 315-321.
- Neamtu, M., Yediler, A., Siminiceanu, I. and Kettrup, A., 2003. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton- like processes. *Journal of Photochemistry nad Photobiologi A: Chemistry* 161, 87-93.
- Neppolian, B., Choi, H.C., Sakthivel, S., Arabindo, B. and Murugesan, V., 2002. Solar light induced and TiO₂ assisted degradation of textile dye reactive blue 4. *Chemosphere* 46, 1173-1181.
- Neyens, E. and Baeyens, J., 2002. A review of classic Fenton's peroxidation as an advanced oxidation technique. *Journal of Hazardous Materials* **3973**, 1-19.
- Pavia, Lampman and Kriz, 1996. Introduction to Spectroscopy: A Guide For Students of Organic Chemistry. 3rd ed. Forth Worth: Harcourt Brace College Publisher.
- Plaska, S. M., El Said, K. R., Stehly, G. G., Gingerich, W. H. and Allen, J. L., 1996. Uptake, tissue distribution, and metabolism of malachite green in the channel catfish (*lctalurus punctatus*). *Can. J. Fish. Aquat. Sci.* 53, 1427-1433.
- Razak Ali, Wan Azeleen Wan Abu Bakar, Azmi Aris and Moh, P.Y., 2001. Degradasi larutan pewarna Azo Tekstil menggunakan system heterogenan O₃, O₃/UL, O₃/TiO₂/UL dan O₃/H₂O₂/UL. Jurnal Teknologi 35, 1-16.
- Safarik, I. and Safarikova, M., 2002. Detection of low concentration of malachite green and crystal violet in water. *Water Research* **36**, 196-200.

- Shu, H.Y., Huang, C.R. and Chang, M.C., 1994. Decolourisation of mono-azo dyes in wastewater by advanced oxidation process: A case study of Acid Red 1 and Acid Yellow 23. *Chemosphere* 29, 2597-2607.
- Skoog, Holler and Nieman, 1998. Prnciples of Instrumental Analysis. 5th ed. Thomas Learning, USA.
- Speight, J. G., 2002. Chemical and Process Design Hanbook. Wiley-Interscience, New York.
- Stylidi, M., Kondarides, D. I. and Verykios, X. E., 2002. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. *Applied Catalysis B: Environment* 47, 189-201.
- Stylidi, M., Kondarides, D.I. and Verykios, X.E., 2003. Pathways of solar lightinduced photocatalytic degradation of azo dyes in aqueous TiO₂ suspensions. *Applied Catalysis B: Environment* 40, 271-286.
- Torrades, F., Pérez, M., Mansilla, H. D. and Peral, J., 2003. Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents. *Chemosphere* 53, 1211-1220.
- Tortora, P.G. and Collier, B.J., 1997. Understanding Textiles. 5th ed. Prentice Hall Inc., New Jersey.
- Wu, K., Xia, Y., Zhao, J. and Hidaka, H., 1999. Photo-Fenton degradation of a dye under visible light irradiation. *Journal of Molecular Catalysis A: Chemical* 144, 77-84.
- Xie, Y., Chen, F., He, J., Zhao, J. and Wang, H., 2000. Photoassisted degradation of dyes in the presence of Fe³⁺ and H₂O₂ under visible irradiation. *Journal of Photochemistry and Photobiology A: Chemistry* 136, 235-240.

Xu, X. R., Li, H. B., Wang, W. H. and Gu, J. D., 2004. Degradation of dyes in aqueous solutions by the Fenton process. *Chemosphere* 57, 595-600.

