SCREENING OF PHYTOCHEMICALS AND BIOLOGICAL ACTIVITY (ANTIFUNGAL, ANTIBACTERIAL, AND ANTICANCER) OF MEDICINAL PLANTS

NUR KHAIRUNNISA BINTI IBRAHIM

THIS DISERTATION IS PRESENTED TO FULFILL PART OF THE REQUIREMENT TO OBTAIN BACHELOR OF SCIENCE WITH HONOURS

BIOTECHNOLOGY SCHOOL OF SCIENCE & TECHNOLOGY UNIVERSITI MALAYSIA SABAH

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

2007

PUNIS 99:1

UNIVERSITI MALAYSIA SABAH

		BOI	RANG	PENCE	SAHAP	I STA	TUS TES	sis@			
DUL:	Screening	of	phyt	ochemica	le a	and	bidogi	(Al	Activiti	9 (Antitung
-	Antibadenia	nl, ar	nd	Antichnie	1) 01	N	ledicina	1			
zah:	Sarjana	Nu	da	kepujia	n	b i ofe	knolugn			_	
			SESI	PENGAJ	LAN:	2004	4/2005	-			
ya Nu	NR KHAI	KUNNI	PA.	BINTI	UFBE	AHIM			_		
	abah dengan s						disimpan	di Per	pustakaan	Unu	versili
	dalab bakmilil										1
erpustinggi.	akaan Univer akaan dibenar tandakan (/	kan me									
crpust	akaan dibenar tandakan (/	kan me		salinan tes (M ke	is ini seb lengandu spentings	ungi maan Mal	aban pertu aklumat ya	karan ng be rti yan		itusi selan	pengajian natan atau
Perpustinggi.	akaan dibenar tandakan (/)	embuat	salinan tes (M ke A (N	is ini seb lengandu penting: KTA R/	agai bi ungi mi an Mal AHSIA lungi m	aban pertu aklumat ya aysia sepe RASMI I taklumat T	karan ing be rti yan 972) ERH/	antara inst rdarjah kes ng termaktu	itusi selan ub di	pengajian natan atau dalam ditentukan
Perpust inggi.	akaan dibenar tandakan (/ SU	kan me) TLIT	embuat	salinan tes (M ke A (M o	is ini seb lengandu penting: KTA R/	agai bi ungi mi an Mal AHSIA lungi m	aban pertu aklumat ya aysia sepe RASMI I taklumat T	karan ing be rti yan 972) ERHA iana p	antara inst rdarjah kes ng termakti AD yang te enyelidika	itusi selan ub di elah o n dij	pengajian natan atau dalam ditentukan alankan)
Perpust inggi.	akaan dibenar tandakan (/ SU	kan me) TLIT RHAL	embuat	salinan tes (M ke A (M o	is ini seb lengandu penting: KTA R/	agai bi ungi mi an Mal AHSIA lungi m	aban pertu aklumat ya aysia sepe RASMI I taklumat T	karan ing be rti yan 972) ERHA iana p	antara inst rdarjah kes og termaktu AD yang to	itusi selan ub di elah o n dij	pengajian natan atau dalam ditentukan alankan)
Perpustinggi. **Sila	akaan dibenan tandakan (/ SU TE	kan me) TLIT RHAI DAK T	embuat D ERHAI	salinan tes (M ke A (M o	is ini seb lengandu penting: KTA R/	angi ma an Mal AHSLA lungi m nisasi/	aban pertu aklumat ya aysia sepe RASMI I taklumat T badan di m	karan ng be rti yan 972) TERHI 1ana p	antara inst rdarjah kes ng termakti AD yang te enyelidika	itusi selan ub di elah n dij	pengajian natan atau dalam ditentukan alankan)
Perpust tinggi. **Sila 1	akaan dibenan tandakan (/ SU TE TE TE ATANGAN ap: 16, 711	kan me) TLIT RHAI DAK TI PENUL	ERIIAI	salinan tes (M ke A (N 0	is ini seb lengandu penting: KTA R/	angi ma an Mal AHSLA lungi m nisasi/	aban pertu aklumat ya aysia sepe RASMI I taklumat T badan di m	karan ng be rti yan 972) TERHI 1ana p	antara inst rdarjah kes ng termaktu AD yang te enyelidika Disahkan o	itusi selan ub di elah n dij	pengajian natan atau dalam ditentukan alankan)
Perpust tinggi. **Sila 1	akaan dibenan tandakan (/ SU TE TI Mauhumus AFANGKN ap: 16, 711 , 711 AH · H	kan me) TLIT RHAI DAK TI PENUL	ERIIAI	salinan tes (M ke A (N 0	is ini seb lengandu penting: KTA R/	angi ma an Mal AHSLA lungi m nisasi/	aklumat ya aysia sepe RASMI I taklumat T badan di m	karan ng be rti yan 972) ERHA 1ana p	antara inst rdarjah kes ng termaktu AD yang te enyelidika Disahkan o	itusi selan ub di elah n dij	pengajian natan atau dalam ditentukan alankan)

ATAN: * Potong yang tidak berkenaan.

.

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

I hereby confess this project report is based on my laboratory work except for adaptations from other sources as stated.

17 April 2006

PRIM NUR KHAIRUNNISA BINTI IBRAHIM

HS2004-2654

1. SUPERVISOR

(DR. JUALANG AZLAN GANSAU)

2. EXAMINER 1

(DR. IVY WONG NYET KUI)

3. EXAMINER 2

(DR. ZALEHA A. AZIZ)

4. DEAN

Stan Marina

(SUPT/KS ASS. PROF. DR. SHARIFF A. KADIR. S. OMANG)

JIV

ii

Signature

Zules

ACKNOWLEDGEMENT

Firstly, I would like to forward my gratefulness to Allah for guiding me throughout the completion of my final year project. Thanks to Dr. Jualang Azlan Gansau, my supervisor, for helping me all along the process. Thank you for the support and ideas you've shared. Not forgetting my co-supervisor, Prof. Ho Coy Choke, thank you for the support and advices given.

To Mr. Frank and Patrick from Orchid De Villa in Inanam, thank you for helping me selecting samples and sponsoring samples for me. I would like to express my deep appreciation to my beloved Father, Ibrahim bin Gusti, and Mother, Farhana Loo Abdullah, my siblings, and my dearest, Syed Abdul Hadi bin Syed Hamzah, thanks for the motivations and love. I personally thank Kumuda Suppayah and Chee Jo Anne who are always there when it rains to motivate me, support me, and making my life so cheerful and fun. Not forgetting Farrah Mohd. Hatta, Siti Aishah binti Rafee, and Aizati Azlin Khairul Anwar for being there whenever I am down and thank all of you for motivating me and supporting me.

Thanks to Miss Radizah, Madam Rokiah, Mr. Musbah, and Mr. Rizal for making things a lot easier in laboratory. To Miss Aina and Mr. Ho, thank you for the guidance given. Thanks to my course mates for giving me ideas and helping in finishing this project.

ABSTRACT

This project was conducted to study the presence of phytochemicals (alkaloid, saponin, and anthraquinone) and the biological activity (antifungal, anticabterial, and PP1 inhibitor) of plant samples. A total of nine samples were collected from Orchid De Villa located in Inanam, and one sample was collected around University Malaysia Sabah Campus. All 10 samples were extracted using acetone, methanol and chloroform solvent. Dragendroff's reagent and Wagner's reagent were the two indicator used to test the presence of alkaloid. The result obtained showed that all samples have alkaloid constituents. Foam test and Liebermann-Burchard (LB) test were conducted to testify presence of saponin in all of the samples. The results obtained showed that all samples have negative result for foam test and only Terminalia catappa showed positive result for LB test. For anthraquinone test, no sample showed positive result for both free anthraquinone and C-glycoside bounded anthraquinone. Antifungal screening system involves only Candida albicans. Samples that showed inhibition zone were Mimosa pudica (2.0 cm), Elephantopus tomentosus (2.4 cm), Dendrobium crumenatum (1.7 cm), Opuntia dillenii (1.5 cm), Terminalia catappa (1.6 cm), and Curcuma longa (2.0 cm). Antibacterial screening involves screening against Escherichia coli, Bacillus subtilis, and Salmonella typhi. Extract of Opuntia dillenii (1.3 cm), Terminalia catappa (1.4 cm), and Phyllanthus urinaria (1.3 cm) were testified to have anti-Escherichia coli activity. As for Bacillus subtilis screening, all 10 samples showed positive result. In Salmonella typhi test, all samples showed inhibition except for Elephantopus tomentosus and Curcuma longa extracts. For PP1 inhibitor screening, Terminalia catappa, Polygenum chinense, and Phyllanthus urinaria inhibit both wild (PAY 704-1/ H10.018) and mutant (PAY 700-1/H10.017) strain of yeast cancer cell. Orthosiphon aristatus, Curcuma longa and Phyllanthus urinaria are also testified to have inhibition. However, samples that showed inhibition were testified to be toxic towards both wild and mutant strains. Therefore, none of the samples are potential PP1 inhibitor.

ABSTRAK

Projek ini dijalankan untuk mengkaji kehadiran sebatian fitokima (alkaloid, saponin, dan antrakuinon) dan aktiviti biologi (antifungi, antibakteria, dan antikanser) sampel tumbuhan. Sembilan sampel diambil di Orchid De Villa, Inanam, dan satu sampel diambil di sekitar Kampus Universiti Malaysia Sabah. Kesemua sampel diekstrak menggunakan aceton, metanol, dan klorofom. Reagen Dragendroff dan Wagner adalah penunjuk digunakan untuk mengkaji kehadiran sebatian alkaloid. Keputusan menunjukkan semua sampel mempunyai alkaloid. Ujian Biuh serta ujian Liebermann-Burchard (LB) diadakan untuk mengkaji kehadiran saponin dalam sampel. Keputusan ujian Biuh menunjukkan semua sampel tidak mengandungi saponin. Bagi ujian LB, hanya Terminalia catappa menunjukkan kehadiran saponin. Semua sampel memberikan keputusan negatif untuk ujian kehadiran antrakuinon bebas dan antrakuinon terikat pada C-glikosidik. Ujian antifungi melibatkan Candida albicans sahaja. Sampel yang didapati berpotensi merencat pertumbuhan C. albicans ialah Mimosa pudica (2.0 cm), Elephantopus tomentosus (2.4 cm), Dendrobium crumenatum (1.7 cm), Opuntia dillenii (1.5 cm), Terminalia catappa (1.6 cm), dan Curcuma longa (2.0 cm). Ujian antibakteria melibatkan Escherichia coli, Bacillus subtilis, dan Salmonella typhi. Ekstrak Opuntia dillenii (1.3 cm), Terminalia catappa (1.4 cm), dan Phyllanthus urinaria (1.3 cm) mempunyai potensi merencat pertumbuhan Escherichia coli. Dalam ujian anti-Bacillus subtilis, semua sampel mempunyai potensi sebagai perencat. Untuk ujian perencatan Salmonella typhi pula, hanya Elephantopus tomentosus dan Curcuma longa tidak menunjukkan keputusan positif. Ujian antikanser yang dijalankan menunjukkan Terminalia catappa, Polygonum chinense, dan Phyllanthus urinaria mempunyai aktiviti perencatan. Sampel-sampel tersebut merencat pertumbuhan kedua-dua yis iaitu jenis liar (PAY 704-1/H10.018) dan jenis mutan (PAY 700-1/H10.017). Orthosiphon aristatus, Curcuma longa, dan Phyllanthus urinaria juga menunjukkan perencatan. Walau bagaimanapun, sampel-sampel tersebut adalah toksik terhadap yis yang digunakan.

v

CONTENTS

			Page
Con	fession		i
Veri	fication		ii
Ack	nowledg	ment	iii
Abst	ract		iv
Abst	rak		v
Cont	ents		vi
List	of Tables	S	х
List	of Figure	es	xi
List	of Plates		xii
List	of Symbol	ols	xiv
Cha	pter 1	Introduction	1
Cha	pter 2	Literature Review	3
2.1	Media	cinal Plants	3
2.2	Phyto	chemical Screenings	4
	2.2.1	Alkaloid	4
	2.2.2	Saponin	7
	2.2.3	Anthraquinone	8
2.3	Samp	les	
	2.3.1	Phylanthus urinaria	9
	2.3.2	Elephantopus tomentosus	11
	2.3.3	Orthosiphon aristatus	13
	2.3.4	Polygonum chinense	16
	2.3.5	Curcuma longa	18
	2.3.6	Strobilanthus crispus	21
	2.3.7	Terminalia catapa	22
	2.3.8	Opuntia dilleni	25
	2.3.9	Mimosa pudica	27
	2.3.10) Dendrobium acumarata	29

2.4	Biological Activity	32
	2.4.1 Antifungal	32
	a) Candida albicans	33
	2.4.2 Antibacterial	35
	a) Escherichia coli	36
	b) Bacillus subtilis	37
	c) Salmonella typhi	38
	2.4.3 Anticancer	39
	a) Signal Transduction	41
	b) MAP Kinase Pathway	42
	c) Protein Kinase Pathway	43
	d) Protein Phosphotase	45
	e) Protein Phosphotase type 1	45
	f) Protein phosphotase type 2A	47
Chap	pter 3 Methodology	50
3.1	Overview	50
3.2	Sample	51
	3.2.1 Source	51
	3.2.2 Drying and Storage	51
	3.2.3 Extraction	51
3.3	Phytochemicals Screening	52
	3.3.1 Alkaloid	52
	3.3.2 Saponin	53
	3.3.3 Anthraquinone	54
3.4	Biological Activity	56
	3.4.1 Antifungal	56
	a) Media preparation	56
	b) Mother culture	57
	c) Subculture	57
	d) Gram Staining	57
	e) Screening	58

vii

	3.4.2 Antibacterial	59
	a) Media preparation	59
	b) Mother culture	60
	c) Subculture	60
	d) Gram Staining	60
	e) Screening	61
	3.4.3 PP1 Inhibitor	61
	a) Media preparation	61
	b) Broth	63
	c) Screening	63
Cha	pter 4 Result	64
4.1	Sample Extraction	64
4.2	Plant Extraction Storage	64
4.3	Gram Staining	66
4.4	Phytochemicals Screening	66
	4.4.1 Alkaloid	66
	4.4.2 Saponin	72
	4.4.3 Anthraquinone	76
4.5	Antifungal	80
4.6	Antibacterial	85
4.7	PP1 Inhibitor	98
	4.7.1 Wild type strain H10.018	98
	4.7.2 Mutant type strain H10.017	111
Chaj	pter 5 Discussion	122
5.1	Plant Samples Preparation and Extraction	122
5.2	Alkaloid Screening	123
5.3	Saponin Screening	124
5.4	Anthraquinone Screening	126
5.5	Antifungal Screening	127
5.6	Antibacterial Screening	129
	5.6.1 Escherichia coli	130

viii

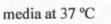
	5.6.2	Bacillus subtilis	131
	5.6.3	Salmonella typhi	132
5.7	Antica	ancer Screening	133
Chaj	pter 6	Conclusion	137
Refe	rences		141

List of Tables

No. 7	Table H	age
2.1	Yeast strain for screening	46
2.2	Expected result from PP1 inhibitor screening	47
3.1	Ingredients of Potato Dextrose Agar	56
3.2	Ingredients for Potato Dextrose Broth	56
3.3	Nutrient Agar ingredients	59
3.4	Nutrient Broth ingredients	59
3.5	Yeast Peptone Dextrose ingredients	62
3.6	Yeast Peptone Dextrose + Sorbitol ingredients	62
4.1	Gram staining result	66
4.2	Alkaloid screening result	68
4.3	Saponin test result	73
4.4	Anthraquinone screening result	77
4.5	Candida albicans screening result	81
4.6	Screening result for antibacterial activity	87
4.7	Anticancer activity of samples on wild type strain PAY 704-1/H10.018	100
4.8	Anticancer activity of samples on mutant type strain PAY 700-1/H10.017	112

List of Figures

No. I	Figure	Page
2.1	Anthraquinone basic structure	8
2.2	Mitogen Activated Protein Kinase pathway	43
2.3	Protein Kinase C mechanism	45
3.1	Overview of the project	50



List of Plates

No. P	late	Page
2.1	Phyllanthus urinaria	11
2.2	Elephantopus tomentosus	12
2.3	Orthosiphon aristatus	15
2.4	Polygonum chinense	17
2.5	Curcuma longa	20
2.6	Strobilanthus crispus	22
2.7	Terminalia catappa	24
2.8	Terminalia catappa tree	25
2.9	Opuntia dillenii	27
2.10	Mimosa pudica	29
2.11	Dendrobium crumenatum	30
4.1	Plant sample extraction.	65
4.2	Extraction storage.	65
4.3	Alkaloid screening result	69
4.4	Saponin screening result – Foam Test	74
4.5	Saponin screening result - Lieberman-Burchard Test	75
4.6	Anthraquinone screening result - Free anthraquinone	78
4.7	Anthraquinone screening result - C-glycoside bounded anthraquinone	79
4.8	First Candida albicans screening test.	82
4.9	Second Candida albicans screening result	84
4.10	First screening result for Escherichia coli	88
4.11	Second screening result for Escherichia coli	90
4.12	First screening result of Bacillus subtilis	91
4.13	Second screening result of Bacillus subtilis	93
4.14	First screening result of Salmonella typhi	95
4.15	Second screening result of Salmonella typhi	97
4.16	First screening result of PAY 704-1/H10.018 wild strain on YPD media	101
	at 28 %	

4.17	First screening result of PAY 704-1/H10.018 wild strain on YPD + S	103
	media at 28 °C	
4.18	Second screening result of PAY 704-1/H10.018 wild strain on YPD and	105
	YPD + S media at 28 °C	
4.19	First screening result of PAY 704-1/H10.018 wild strain on YPD media	106
	at 37 °C	
4.20	First screening result of PAY 704-1/H10.018 wild strain on YPD + S	108
	media at 37 °C	
4.21	Second screening result of PAY 704-1/H10.018 wild strain on YPD + S	110
	media at 37 °C	
4.22	First screening result of PAY 700-1/H10.017 mutant strain on YPD	114
	media at 28 °C	
4.23	First screening result of PAY 700-1/H10.017 mutant strain on YPD + S	116
	media at 28 °C	
4.24	Second screening result of PAY 700-1/H10.017 mutant strain on YPD	118
	and YPD + S media at 28 °C	
4.25	First screening result of PAY 700-1/H10.017 mutant strain on YPD	119
	media at 37 °C	
4.26	First screening result of PAY 700-1/H10.017 mutant strain on YPD + S	121

xiii

Lists of Symbol

°C	Celsius
β	Beta
α	Alpha
γ	Gamma
μl	microliter
ml	mililiter
pH	Hydrogen concentration
mm	millimeter
cm	centimeter
g	gram
%	percent
g/ml	gram per milliliter
(v/v)	volume over volume
(w/v)	weight over volume
mg	miligram
М	Molar
m	meter
С	Carbon
0	Oxygen
Mg	Magnesium
Са	Calcium
kDa	kiloDalton
Bi(NO ₃) ₂	Bismuth (III) Nitrate
HgCl ₂	Mercury Chloride
KI	Potassium Iodide
H_2SO_4	Sulfuric Acid
NaSO ₄	Sodium Sulphate
CHCl ₃	Chloroform
NH4OH	Ammonium Hydroxide

NaOH	Sodium Hydroxide
FeCl ₂	Ferum (II) Chloride
HCl	Hydrochloric Acid
Rpm	Rotation per minute
PP1	Protein Phosphatase Type 1
CGA	C-Glycoside bounded anthraquinone.

CHAPTER 1

INTRODUCTION

Plant is the most important organism in today's world as it is the biggest and the first organism in food chain which contributes to conversion of energy from one organism to another. However, plants do not only work as energy supplier but also as medicine. These types of plants are better known as medicinal plant. This project main scope is to screen phytochemicals from these medicinal plants and also to screen its biological activity. Plants in today revolutionized world are used for screening of pharmaceuticals property. Plant produces secondary metabolites that are testified to fight some diseases by interacting with the sources. It is very important to find out the precious treasure hidden in plants to improve health.

Malaysia is a well known country with its green scenery where variety of plants can be obtained. Compounds produced by plants are further tested for its potential in medicinal property. This leads to new drug discovery in the whole world. Phytochemicals research in Malaysia started as early as 1950s and centered in University Malaya Singapore. January 19979, research on medicinal plants started with

the establishment of Traditional medicine Research team. (KUBATRA). This team consists of chemists, botanists, microbiologists and zoologists which approach multidiscipline (Ikram, 1995). Research on biological activity of medicinal plants is getting more important as the increase of population leads to high deman of food, land, and infrastructures (Clegate & Molyneux, 1993).

Phytochemicals screening is a method of testing plant extracts for presence of phtochemicals like saponin, alkaloid, antraquinone, tannin and other natural compound as desired. Plant extracts are also used in biological activity screening. This is done by conducting assays for plant extracts against microorganism to find out whether the plant has medicinal property.

There are many commercialized plants that are known to cure and prevent diseases but this does not mean that research on other plants for new drug discovery should stop. Research should be done continuously to discover the most efficient drugs to treat certain diseases. Besides that, certain microorganisms that cause diseases in human have the ability to be resistance towards certain drugs.

The objectives of this project is to prepare plant extracts using various solvents, screen sample for the presence of phytochemicals (saponin, alkaloid, and anthraquinone), and to test the biological activity of plant samples (antibacterial, antifungal and PP1 inhibitor).

CHAPTER 2

LITERATURE REVIEW

2.1 Medicinal Plants

Medicinal plants are plants that have medicinal property. These plants are used for curing infections and diseases. Ancestors attempted thousands of time in using plant as medicine as they believe that plants are gifts from God (Kapoor, 1990). With latest technology, we can discover the miracle of these medicinal plants by researching the plant chemical substances that work actively against infections and diseases. Plants are known to have active compounds that can be use for therapeutic purpose. Some of the diseases that is usually cured using medicinal plants includes cough, flu, diarrhea, headache, malaria, high blood pressure, diabetes mellitus, gastric, and many more (Fasihuddin & Hasmah, 1993).

2.2 Phytochemical Screenings

Phytochemical is chemical substances derived from plant for example alkaloid, saponin, tannin, and phenolic compound (Padua *et al.*, 1999). Phytochemicals is secondary metabolite produce by plants. It is not a necessity for a plant to use it for metabolite activity. Infact, the presence of phytochemical did not result in any deficiency for the plant (V&HSG, 2006). However, it is important in protecting the plants from environmental pressures or in controlling the growth of plant. Plant has pharmaceutical property and this gives it a very high value when it comes to chemical substances it contains. There are two product produce by plants: Primary metabolite and secondary metabolite.

Primary metabolites have cell function that works as building unit for all components of cell. This includes amino acids, nucleic acid, lipid and carbohydrate. Secondary metabolite has no function for cell. However, it might function as antibacterial agent that makes the plant resistance towards certain bacteria for example alkaloid.

2.2.1 Alkaloid

The word alkaloid is derived from the word alkaline which is derived from Arabic word al-qali. Alkaloid has been used in extracted form for a very long time as poison; for example narcotic and medicine (Kutchan, 1995). Alkaloid has structure of 1 or more nitrogen and it is basic due to the presence of nitrogen. It is toxic to

human and has physiological activity. It is generally colourless but a few with colour like berberine and betaine; bitter and it is an optically active compound. Alkaloid is in liquid form in room temperature (Harbone, 1984). Alkaloid is soluble in non-polar solvents like chloroform or ether (Ali, 2002).

Alkaloid can be differentiated into a few groups based on its chemical structure; heterocyclic or non-heterocyclic which is divided into 12 major groups based on the ring structure (Padua *et al.*, 1999). Alkaloid is divided into five main groups: alkaloid with Nitrogen ecocyclic and amine aliphatic, alkaloid putresine, spermidine, and spermine, alkaloid peptide, alkaloid terpene and steroid, and alkaloid heterocyclic.

Alkaloid can normally be found in actively growing tissue, cell epidermis and hypodermis. It is waste derived from plant as nitrogen source. It plays an important role in supporting growth of plant. It is used as medication as analgesic or better known as pain relievers like narcotic and morphin; and as anesthetic. Most alkaloid dysfunction as they are degraded at temperature above 70°C (Fasihuddin & Hasmah, 1993). Nicotin is the first known alkaloid to be poisonous and has potential as pesticide (Kutchan, 1995).

Normally, to testify the presence of alkaloid, sample is tested with six different reagents; Dragendroff's, Mayer's, Wagner's, Hager's, Tannic acid test, and Ammonia Reineckate Test (Ali, 2002). All six tests must be performed in conformational of the alkaloid substance. However, due to limited chemical supply,

I will only conduct the Dragendroff's, Mayer's and Wagner's test. Dragendroff's reagent consists of potassium iodide and bismuth nitrate, the addition of this reagent will form orange coloured precipitation if there is alkaloid in sample tested. Mayer's reagent is potassium mercury-iodide solution, White or pale colour of precipitation will indicates presence of alkaloid except alkaloids with purine group and a few others. As of Wagner's, Iodide solution, brown or reddish colour precipitation indicates presence of alkaloid.

In plants, alkaloid acts as poisonous and stimulating agents (Ali, 2002). For example Tomatin, a major alkaloid in tomato that works as repellent. Alkaloids are capable to exhibit extensive and well-marked pharmacological activities like analgesic, antiamoebic and emetic, anticholinergic, antihypertensive, antimalarial, antitumor, antitussive, cardiac depressant, central nervous stimulant, diuretic, oxytocic, ophthalmic and cholinergic, skeletal muscle relaxant, and smooth muscle relaxant.

There are no systematic structural classification exists for alkaloids. However, there most widely accepted classification is true alkaloids, protoalkaloids, pseudoalkaloids. True alkaloids are toxic. It shows a wide range of physiological activity. This group's alkaloids contain nitrogen in a heterocyclic ring, derived from amino acids and normally occur in plants for example colchine, quinine, morphine, emetine etc.

Protoalkaloids are simpler amine in which the amino acid nitrogen is not in a heterocyclic ring for example mescaline and ephedrine. Pseudoalkaloids are not derived from amino acid precursor and are usually basic in nature for example steroidal alkaloid and purines.

2.2.2 Saponin

Saponins are an important group of glycosides which are widely distributed as plant constituents. It is the glycoside of steroid, steroid alkaloids or triterpenes which are found in plants especially plant with waxy protective coating. The most important saponin-containing drugs are Quillaia and Senega. Most of saponins are neutral and soluble in water. Saponins are hydrolyzed to form sugar, normally dextrose, and an aglycone, generally known as sapogenin (Ali, 2003). The sapogenins are soluble in water and in weak alcohol. Sapogenins may be steroid or triterpene and the sugar moiety maybe glucose, galactose, pentose or a methylpentose. Saponin with addition of water forms colloidal solution which forms froths on shaking and it produces stable emulsion on shaking with oil and fats.

Saponins are highly complex glycosides which are widely distributed in the higher plants. Saponin can cause haemolysis of red blood corpuscles, even at great dilution. Most of saponins are toxic to be injected to human body but it is much less toxic when consumed due to its haemolysis property mentioned earlier. Saponins are also very toxic to fish. Any markedly toxic saponins are known as sapotoxin.

REFERENCES

Ali M., 1998. Textbook of Pharmacognosy, CBS Publishers & Distributors, Delhi.

- Andrews, P. D. Stark, M.J. R., 2000. Type 1 protein phosphatase is required or maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. Journal of Cell Science 113, 507-520.
- Asmah, R., Susi, E., Abdah, M.A., Patimah, I., Taufiq, Y. Y.H., and Mohd Fadzelly, A. B., 2006. Anticarcinogenic properties of *Strobilanthes crispus* xxtracts and its compounds *in vitro*. *International Journal of Cancer Research* 2(1) 47-49.
- Atlas., and Ronald, M., 1946. *Handbook of Microbiology Media*. Second Edition. CRC Press, United State of America.
- Bradshaw, R. A. and Dennis, E. A., 2003. Handbook of Cell Signaling Volume 1, Academic Press, USA.
- Champbell, N. A. and Reece, J. B., 1999. *Biology*. 9th Edition. Pearson education, Inc., United State of America.
- Cowen, M. M., 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews. 12 (4): 564-582.
- Colegate, S. M. and Molyneux, R. J., 1993. *Bioactive Natural Products: Detection, Isolation, and Structural Determination.* CRC Press, United State.
- Cohen, P., 1989. The structure and regulation of protein phophatases. Annu. Rev. Biochem 58, 503-508.
- Cohen, P., Schelling, D. L., Stark, M.J., 1989. Remarkable similarities between yeast and mammalian protein phosphatases. *FEBS Lett.* 250, 601-606.

- Cohen, P. T. W., 1997. Novel protein Serine/Threonine phosphatase: Variety is the spice of life. *Trends Biochem* 22, 245-251.
- Darah, I. and Halim, O., 1995. Antifungal Activity Studies of the Cassia alata Leaf Crude Extract on Dermatophytes. Malays. Application Biology 24 (2), 1-5.
- Ebadi, M., 2002. *Pharmacodynamic Basis of Herbal Medicine*. CRC Press. Boce, London, New York, Washington, D.C.
- Earth Notes Herb Library, 2003. Bistort Polygonacae. http://earthnotes.tripod.com/bistort_h.htm
- Fasihuddin Ahmad and Hasmah Raji, 1993. Kimia Hasilan Semulajadi Dan Tumbuhan Ubatan. Dewan Bahasa Dan Pustaka, Kuala Lumpur.
- Hoffman, E. J., 1999. Cancer and the Search for Selective Biochemical Inhibitors, CRC Press LLC, United State of America.
- Harborne, J. B., 1984. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Second Edition. Chapman and Hall, London.
- Ikram, M. S., 1995. Sebatian Semulajadi Daripada Tumbuhan: Potensi, Prospek Dan Kenyataan. Universiti Kabangsaan Malaysia, Bangi.
- Karp, G., 2002. Cell And Molecular Biology: Concepts And Experiment. Third Edition. John Wiley & Sons. New York.
- Kutchan, T., 1995. Alkaloid biosythesis. The plant Cell 7, 1059-1070.
- Madigan, M. T., Martinko, J. M., Parker, J., 2003. Brock Biology of Microorganisms. Tenth Edition. Prentice Education, Inc., New York.

- Manning, G., Whyte, D. B., Martinez, R., Hunter, T. and Sudarsanam, S., 2002. The protein kinase complement of the human genome. *Science* 298, 1912-1934.
- Massiot, G., 1999. Chemical from Plants: Perpesctives on plant Secondary Products. Imperial College Press, Singapore.
- Mohd Fazelly, A. B., Asmah, R., and Fauziah, O., 2006. Effects of Strobilanthes crispus tea aqueous extracts on glucose and lipid profile in normal and streptozotocin-induced hyperglycemic rats. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 61 6-11.
- Moody, J. O., Segun, F. I., Aderounmu, O. Omotade, O. O., 2003. Antisickling activity of *Terminalia catappa* leaves harvested at different stages of growth. *Nigerian Journal of Natural Products and Medicine* 7 30-32.
- Nature That Heels and Cure, 2003. Misai Kucing. http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
- Padua, L. S. D., Bunyapraphatasa, N. and Lemmens, R. H. M.J., 1999. Plant Resources Of South-East Asia 12: (1) Medicinal And Poisonous Plants. Backhuys Publishers, Leiden.
- Pamplona-Roger, G. D., 2003. Encyclopedia of Medicinal Plants, Volume 2, Editorial Safeliz, Spain.
- Perez, F. J., 1990. Allelophatic effect of hydroxamic acids from cereals on Avena sativa and A.fatua. Phytochemistry 29 (3), 773-776.
- Philippine Medicinal Plants, 2004. Daynon Polygonum chinense L.. http://www.stuartxchange.org/Daynon.html

Pollard, T. D. and Earnshaw, W. C., 2002. Cell biology. Saunders, USA.

- Prajapati, N.D., Purohit, S. S., Sharma, A. K., Kumar, T., 2003. A Handbook of Medicinal Plants A Complete Source Book, First Edition, Agrobios, India.
- Prasad, R., 1991. Candida albicans Cellular and Molecular Biology. Springer Verlag, Berlin Heidelberg, Germany.
- Rajan, S.S., 2001. Introduction to Fungi, First Edition, Anmol Publication Pvt. Ltd., India.
- Ross, I. A., 2003. *Medicinal Plants of the World*, Volume 1, Second Edition, Humana Press Inc., United State of America.
- Sharma, R., 2004. Agro-techniques of Medicinal Plants, First Edition, Diya Publishing House, Delhi, India.
- Sharma, V. N., 2002. Essentials of Pharmacology. Second Edition. CBS Publisher & Distribution. Darya Ganj, New Delhi, India.
- Sheperd, M. G., 1991. Morphogenesis in Candida albicans. Springer-Verlag Berlin Heidelberg, Germany.
- Sompayrac, L., 2004. How Cancer Works, Bartlett Publishers, Inc., United State of America
- Stark, M. J. R., Division of Gene and Regulation and Expression: Roles and Regulation of Yeast Protein Serine/Threonine Phosphatase. University of Dundee, U. K.
- Tan, S. C., 1990. Biokimia Tumbuhan Hijau. First edition. Dewan Pustaka dan Bahasa, Kuala Lumpur.

University of Connecticut-Department of Molecular and Cell biology, 2003. Student presentation on Salmonella enterica typhi. <u>http://web.uconn.edu/mcbstaff/graf/Student%20presentations/Salmonellatyphi/</u> <u>Salmonellatyphi.html</u>

- Vitamins and Health Supplements Guide, 2006. Phytochemicals. http://www.vitamins-supplements.org/phytochemicals
- Thomas, W. A. R., 1978. *Healing Plants A Modern Herbal*. Imprimeries Reunies, Switzerland.
- Wiart C., 2000. *Medicinal Plants of Southeast Asia*, Pelanduk Publications (M) Sdn Bhd, Malaysia.
- Zirngibl, L., 1998. Antifungal Azoles: A comprehensive Survey of their Structures and Properties. Department of Chemistry University of Hull.

