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ABSTRAK 

Oalam kertas kerja ini, kaedah Runge Kutta peringkat ke-4 dan kaedah Adam 

Bashforth peringkat ke-2 telah digunakan dalam penyelesaian masalah system 

dinamik secara tak linear. Oalam kajian ini, bandul Froude telah digunakan. 

Perbandingan antara kaedah Runge Kutta peringkat ke-4 dengan kaedah Adam 

Bashforth telah dijalankan untuk menjelaskan keberkesanan antara kedua-dua kaedah 

dalam pencapaian keputusan yang jitu. Saiz langkah yang berbeza digunakan dalam 

kertas kerja. Oi samping itu, penggunaan bahasa C dalam computer akan dijalankan. 

Oaripada hasil kajian, keputusan daripada kaedah Runge Kutta peringkat ke-4(ERK4) 

adalah lebih tepat berbanding dengan kaedah Adam Bashforth peringkat ke-2(EAB2). 
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ABSTRACT 

In this dissertation, the Fourth Order Explicit Runge Kutta method (ERK4) and 

Second Order Explicit Adam Bashforth method (EAB2) are implemented in solving 

nonlinear dynamic system such as the Froude pendulum. Comparisons between ERK4 

method and EAB2 method will be made to clarify the effectiveness of these two 

methods to achieve accuracy. Different step sizes are also considered in this 

dissertation. Besides, a C-Ianguage based program will be implemented. From the 

obtained results, Fourth Order Explicit Runge Kutta Method (ERK4) is found to be 

more accurate than Second Order Explicit Adam Bashforth Method (EAB2). 

UMS 
UNIVERSITI MALAYSIA SABAH 



DECLARATION 

AUTHENTICATION 

ACKNOWLEDGEMENT 

ABSTRAK 

ABSTRACT 

CONTENT 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF ABBREVIATIONS 

LIST OF SYMBOLS 

CONTENTS 

CHAPTER 1 INTRODUCTION 

1.1 Introduction of Ordinary Differential Equation 

1.2 Nonlinear Dynamic System 

1.3 Froude Pendulum 

1.4 Application of Froude Pendulum 

1.5 Runge-Kutta Method 

1.6 Multistep Method 

1.7 Aims And Objective 

1.8 Scope of Research 

CHAPTER 2 LITERATURE REVIEW 

2.1 

2.2 

2.3 

2.4 

2.4 

The Evolution of The Pendulum 

Previous Studies On Froude Pendulum 

Previous Studies On Nonlinear Dynamic System 

Previous Studies On Runge-Kutta Method 

2.4.1 The Explicit Runge-Kutta Method 

2.4.2 The Implicit Runge-Kutta Method 

Previous Studies On Multistep Method 

2.5.1 The Explicit Adam-Bashforth Method 

2.5.2 The Implicit Adam-Moulton Method 

VII 

Page Number 

ii 

III 

IV 

v 

vi 

vii 

x 

xi 

XIII 

xiv 

3 

4 

5 

10 

12 

14 

14 

16 

16 

17 

18 

19 

19 

20 

21 

22 

23 

UMS 
UNIVERSITI MALAYSIA SABAH 



CHAPTER 3 METHODOLOGY 

3.1 Introduction 

3.2 Equation of Motion for A Free Froude Pendulum 

3.3 Formulation of The Runge-Kutta Methods 

3.3.1 First-Order Runge-Kutta Method 

3.3.2 Second-Order Runge-Kutta Method 

3.3.3 Third-Order Runge-Kutta Method 

3.3.4 Fourth-Order Runge-Kutta Method 

3.3.5 High-Order Runge-Kutta Method 

VIII 

24 

24 

26 

30 

31 

32 

34 

38 

44 

3.4 Formulation of The Adam-Bashforth Methods 45 

3.4.1 First-Order Adam-Bashforth Method 45 

3.4.2 Second-Order Adam-Bashforth Method 46 

3.4.3 High-Order Adam-Bashforth Method 47 

3.5 Absolute Stability 48 

3.5.1 Stability Region for Fourth-Order Runge-Kutta Method 49 

3.5.2 Stability Region for Second-Order Adam-Bashforth Method 53 

3.6 Error Analysis 57 

3.6.1 Relative Error 57 

3.7 The Coefficient of Determinant, R2 

3.8 Discretization of The Froude Pendulum 

3.9 Discretization ofERK4 Method 

3.9.1 Algorithm for ERK4 Method 

3.10 Discretization of EAB2 Method 

3.10.1 Algorithm for EAB2 Method 

CHAPTER 4 RESUL TS 

4.1 Overview 

4.2 Numerical Results 

4.2.1 Comparisons of Errors Versus Number of Iterations at 

Different Step Sizes 

59 

60 

62 

63 

66 

67 

70 

70 

71 

85 

UMS 
UNIVERSITI MALAYSIA SABAH 



CHAPTERS DISCUSSIONS AND CONCLUSION 

Discussion 5.1 

5.2 

5.3 

Summary And Conclusion 

Suggestion for Further Work 

REFERENCES 

ix 

100 

100 

102 

105 

106 

UMS 
UNIVERSITI MALAYSIA SABAH 



LIST OF TABLES 

Table No. 

3.1 

3.2 

3.3 

3.4 

3.5 

4.1 

4.2 

Second order explicit RK scheme in Butcher Tableau 

Third order explicit RK scheme in Butcher Tableau 

Fourth order explicit RK scheme in Butcher Tableau 

Minimum s and number ofRKM error coefficients for orders to 8 

Coefficients of Adam Bashforth methods up to order 6 

Comparisons of theta versus number of iterations at different step 

sizes with different equations and values of R2 

Comparisons of function evaluations, k versus number of iterations at 

different step sizes with different equations and values of R2 

4.3 Comparisons of function evaluations, f versus number of iterations at 

4.4 

different step sizes with different equations and values of R2 

Comparisons of relative error between ERK4 and EAB2 methods at 

different step sizes with different equations and values of R2 

4.5 Comparisons of error versus number of iterations at different step 

4.6 

4.7 

sizes with different equations and values of R2 

Absolute stability condition for ERK4 method with h=O.I, h=0.2 

and h=0.3 

Absolute stability condition for EAB2 method with h=O.1 and h=0.2 

and h=0.3 

x 

Page 

34 

37 

43 

44 

47 

74 

79 

82 

84 

90 

92 

96 

UMS 
UNIVERSITI MALAYSIA SABAH 



LIST OF FIGURES 

Figure No. 

1.1 The structure of hand water pump with pendulum 

1.2 Side view ofthe pump and the position of the piston, lever and 

the pendulum during operation ofthe pump 

1.3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

The structure of pendulum clock 

Elements of the methodology 

1I1ustration of a Froude pendulum 

Stability plot of the Runge-Kutta method 

Stability regions for Adam-Bashforth method 

Flowchart of C++ coding for ERK4 method 

Flowchart of C++ coding for EAB2 method 

4.1 Theta versus the number of iterations of ERK4 and EAB2 methods with 

h=O.l and w[O]=1 

4.2 Theta versus the number of iterations ofERK4 and EAB2 methods with 

h=0.2 and w[O]=1 

4.3 Theta versus the number of iterations of ERK4 and EAB2 methods with 

h=0.3 and w[O]=1 

4.4 Function evaluations, k versus the number of iterations of ERK4 method 

with h=O.1 and w[O]=1 

4.5 Function evaluations, k versus the number of iterations of ERK4 method 

with h=0.2 and w[O] =J 

4.6 Function evaluations, k versus the number of iterations of ERK4 method 

with h=0.3 and w[O]=1 

4.7 Function evaluations, fversus the number of iterations ofEAB2 method 

with h=O.1 and w[O]=l 

4.8 Function Evaluation, f versus the number of iterations of EAB2 method 

with h=0.2 and w[O]=1 

4.9 Function Evaluation, fversus the number of iterations of EAB2 method 

with h=0.3 and w[O]=1 

XI 

Page 

6 

6 

9 

25 

26 

52 

56 

65 

69 

71 

72 

72 

75 

76 

76 

80 

80 

81 

UMS 
UNIVERSITI MALAYSIA SABAH 



XII 

4.10 Relative error versus the different step sizes of each ERK4 and EAB2 

methods 83 

4.11 Error versus the number of iterations of ERK4 and EAB2 methods with 

h=O.1 and w[O]=J 87 

4.12 Error versus the number of iterations of ERK4 and EAB2 methods with 

h=0.2 and w[O]=1 87 

4.13 Error versus the number of iterations ofERK4 and EAB2 methods with 

h=O.3 and w[O]=1 88 

4.14 Absolute Stability condition for ERK4 method with h=0.1 93 

4.15 Absolute Stability condition for ERK4 method with h=0.2 93 

4.16 Absolute Stability condition for ERK4 method with h=0.3 94 

4.17 Absolute Stability condition for EAB2 method with h=O.1 97 

4.18 Absolute Stability condition for EAB2 method with h=0.2 97 

4.19 Absolute Stability condition for EAB2 method with h=0.3 98 

UMS 
UNIVERSITI MALAYSIA SABAH 



ODEs 

RKM 

RK4 

ERK 

EAB 

ABM 

LMM 

ERK4 

EAB2 

SSR 

SSE 

SStotal 

LIST OF ABBREVIATIONS 

Ordinary Differential Equations 

Runge Kutta -Method 

Runge Kutta-Method of Fourth Order 

Explicit Runge-Kutta 

Explicit Adam-Bashforth 

Adam-Bashforth Method 

Linear Multi Method 

Explicit-Runge Kutta Method of Fourth Order 

Explicit Adam-Bashforth Method of Second Order" 

Regression 

Error variation 

Total variation 

Xlli 

UMS 
UNIVERSITI MALAYSIA SABAH 



s 

P(s) 

M(n - B) 

m 

[ 

I 

C 

W, 

v 

C, 

hi 

s 

~J 

Per) 

dB 
dT 

dw 

dy 

dy 

dx 

E 
max 

LIST OF SYMBOLS 

order of Runge-Kutta method. 

evaluations of ffor each timestep 

frictional torque that related to slipping velocity B 

mass of pendulum 

total moment of inertia 

XIV 

distance from the axis of rotation to the center of gravity 

viscous coefficient due to the resistance of the air. 

angular velocity of the rotating shaft. 

weighting coefficients 

order of accuracy of the RK method 

quadrature nodes 

quadrature weights 

Runge-Kutta coefficients 

number of stages 

root of the characteristic polynomial 

Stability polynomial ofthe RK process 

First order derivatives towards a function B of r 

First order derivatives towards a function w of y 

First order derivatives towards a function y of x 

Second order derivatives towards a function y of x 

Second order derivatives towards a function B of T 

Maximum possible absolute error 

The coefficient of the determination 

Eigenvalues 

UMS 
UNIVERSITI MALAYSIA SABAH 



xv 

h Step size 

r Absolute stability condition 

UMS 
UNIVERSITI MALAYSIA SABAH 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction of Ordinary Differential Equation 

Differential equation is a type of equation which is expressed in tenns of unknown 

function of several variables that relates the values of the function itself and their 

derivative. Differential equations commonly have been applied in engineering, 

physics, economics, and chemistry (Dormand, J 996). 

For example, the mathematical models implement the fundamental scientific 

laws of physics which include principle of conservation of linear momentum, 

principle of conservation of mass, and principal of conservation of energy in the tenn 

of differential equation (Reddy, 2004). 

If a solution for a given differential equation is not readily available, the 

numerical methods are considered to detennine the exact form. By using numerical 

method, this method can compute a solution of accuracy to the differential equation 

over of period of time as well as solving many practical problems of science and 
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engineering. A well-known example is simple pendulum which based on the principle 

of conservation of linear momentum (e.g. Newton's second law of motion) to 

determine the motion of pendulum (Dormand, 1996; Reddy, 2004) 

There are many numerical methods for solving ordinary differential equations 

(ODEs). These methods are usually categoried as one-step and multistep methods. 

One of the explicit one-step methods is Runge-Kutta methods. On the other hand, the 

multistep methods include implicit Adam-Moulton, explicit Adam-Bashforth and 

Predictor-corrector methods. The approach that used by one-step method is totally 

different as compared to multistep methods. One-step methods use the solution at a 

single initial point to get an approximation to the solution of next point. Multistep 

methods use the sequence of previous solution and derivative values (Dormand, 

1996). 

There are five types of differential equation; ordinary difference equation, 

partial difference equation, delay differential equation, stochastic differential equation, 

and differential algebraic equation. Each of these categories lead to linear and 

nonlinear system. A differential equation is considered to be linear when the 

dependent variable and its derivatives occur only to the power one and there are no 

functions for dependent variable. Otherwise the particular differential equation is 

considered as nonlinear equation (Wikipedia, 2007a; Dormand, 1996). 

Regarding the history of differential equation, Leonhard Euler who also 

invented Euler's method introduced the theory of differential equations in the year 

1768. In the year 1824, Augustin Louis Cauchy used implicit Euler method to prove 
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convergence of Euler method. John Couch Adams was the first person who designed 

the multistep method in 1855. After 40 years in 1895, Carle Runge introduced the 

first Runge-Kutta method. In 1905, Martin Kutta developed the fourth order Runge-

Kutta method. During the year of 1910, Lewis Fry Richardson introduced hi s 

extrapolation method (Wikipedia, 2007b). 

1.2 Nonlinear Dynamic System 

Dynamic system is the behavior of one or more particles that modelled by differential 

equation with initial condition. The behaviour of dynamic system such as velocity, 

position and acceleration. The equation of motion for Froude pendulum is shown as 

follow: (De Jong, 1991). 

d
2
e de I ( de)3 1- , + (c +M'(n)) - +mglsine+-M'"(n) - =M(D.) 

dr dt 6 dt 
(1.1 ) 

with initial condition: e(o) = 0 . 

From the Froude pendulum in equation (1.1), it can be found that it is 

nonlinear dynamic system because the differential equations involve non-linear terms 

like sin e and ( ~~r. The restoring force of the pendulum that is mgl sin e where e 

is the angle of displacement. If the angle of displacement is smaller than 15° , the sin 

e is just approximated with simply e. On the contrary, approximation of sin e is 

inaccurate and it is considered as nonlinear system if the angle is larger than 15° 

(Davidson, 2005). 
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Nonlinear systems seem to provide real natural systems unlike linear systems 

that make simple equations and behaviour of simple system such as simple pendulum 

in phase space. Mostly, there are some factors often vary in nonlinear system such as 

friction forces, damping elements, resistive elements in circuits. It seems that the 

solution of nonlinear system is very messy if comparing with linear system. The 

analytic solution to these systems are difficult to be obtained due to the exponential 

increase error in measurement when the system progresses. As a result, numerical 

method can only be applied to solve nonlinear system (Davidson, 2005). 

1.3 Froude Pendulum 

Froude ' s pendulum is a classical dynamic system that generates self-oscillations in a 

mechanical system with friction. The shaft of the Froude pendulum is connected to an 

engine that rotates at an angular velocity. It fixed to bearing pivot which swings along 

the rotating shaft (Dai & Singh, 1998). 

Self--excited oscillations are produced due to the friction force between a 

rotating shaft and the bearing pivot of a Froude pendulum. The increasing amplitude 

of pendulum depends on damping force and frequency of rotation. This type of 

pendulum is different from the simple pendulum because of its complex three 

dimensional motion (Dai & Singh, 1998; Djidjeli el aI., 1996). 
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For simple pendulum, the motion occurred in a two dimension plane such that 

it does not swing into and out of the page. The actual form of a simple pendulum 

consists of a long bar suspended at the end of a string that support a small, massive 

bob. The simple pendulum body suspends from a fixed point so that it can swing 

under influence of gravity and under its own momentum (Wikipedia, 2008). 

1.4 Application of Froude pendulum 

(i) Hand Water Pump With Pendulum. 

Hand water pump with pendulum is a realization of a new and technically 

original solution for pumping water. The pumping works can be accomplished with 

less invested energy in the form of pushing of the pendulum. The pendulum generates 

about 12 times more output energy than the manual input energy required to keep the 

pendulum swinging. It seems that the pumping work can become easier, long-lasting 

and effortless if using hand water pump. Hence a user can pump out a 1200 liters of 

water per hour, without any fatigue and continue with the pumping (Milkovic, 2005). 

From Figure 1.1 and 1.2, hand water pump with a pendulum for pumping 

water consists of a cylinder (1) with a piston (2), lever system (3), a seesaw (4), a 

pendulum (5), a reservoir (6) and output water pipe (7) (Milkovic, 2005). 
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2 

~, ... 1,. 

. ~.J 'I...; 
r"" , 

1 

Figurel.1 The Structure Of Hand Water Pump With Pendulum 

(Milkovic, 2005). 

Figurel.2 Side View Of The Pump And The Position Of The Piston, 

Lever And The Pendulum During Operation Of The Pump 

(Milkovic, 2005). 
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In order to move the piston and lever vertical in the up-down direction, it can 

give the pendulum which is attached to the end of the lever system a push so that 

much less effort is needed to pump out water. The action of the hands is required to 

maintain the amplitude of the oscillation for a continuous intensity of water flow. The 

pump works well with all sizes of the pendulum, but the best performance is achieved 

with an amplitude of about 90°. Besides, the see-saw and the piston also oscillating 

together with the pendulum, the side with the piston should be heavier than the side 

with the pendulum. It is about 50% heavier than the centrifugal force of the pendulum 

when its swinging amplitude is 90° (Milkovic, 2005). 

To get the water coming out of the output pipe, the pendulum needs to be out 

of balance and should be occasionally pushed to maintain the amplitude of water. The 

power of gravitational potential is also used as driving power. With the gravitational 

potential, the piston will rise to the highest point and the pendulum passes through the 

bottom vertical position during the swinging. In these moments, the pendulum will 

overweigh on the see-saw position and in this phase the piston will push the 

continuous stream of water out of the output pipe (Milkovic, 2005). 

-UMS 
UNIVERSITI MALAYSIA SABAH 



8 

The advantages of this new technically hand water pump compared to present 

hand pump are (Ecosustainable, 2006). 

i) needs the minimum of the effort, because it is only necessary to swing the 

pendulum and maintain the oscillation for several hours, without any 

fatigue. 

ii) Both elderly and children can use it because maintaining the oscillation of 

the pendulum is a easy work and it does not request any special training. 

So everyone can do it. 

iii) The pendulum can be a children's swing, so that useful work can also be 

done through their playing. 

ii) Pendulum Clock. 

A pendulum clock is a clock that uses a pendulum and a swinging weight to calculate 

the accuracy of time period. From its invention in 1656 by Christiaan Huygens until 

the t 930s, the pendulum clock can be considered as the world's most accurate 

timekeeper. Pendulum clocks must be stationary to operate; any motion or 

accelerations will affect the motion of the pendulum, causing inaccuracies, so other 

mechanisms must be used in portable timekeepers. They are now kept mostly for their 

decorative and antique value (Ventures, 2004). 
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