PREPARATION AND CHARACTERIZATION OF MEDICAL GRADE ACTIVATED CARBON FROM BANANA FRUIT (*MUSA ACCUMINATA*)

DESMOND JOHNNY CHONG

DISSERTATION SUBMITTED AS PARTIAL FULFILLMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOUR

INDUSTRIAL CHEMISTRY PROGRAMME SCHOOL OF SAINS DAN TEKNOLOGI UNIVERSITI MALAYSIA SABAH

MARCH 2005

UNIVER	PUM: RSITI MALAYSIA SABAH	\$ 99:1
· BORANG PE	NGESAHAN STATUS TESIS@	
IL: PREPARATION	AND CHARACTERIZATION OF	-
MEDICAL GRADE h: BACHELOR OF	ACTIVATED CARBON FROM BANANA	FRUIT (MUSSA AQUMINATA
SESI PEN	IGAЛAN: 2002-2005	
DESMOND JOHNNY	CHONG	
¹ Sia Sabah dengan syarat-syarat kegun ¹ Sis adalah hakmilik Universiti Malaya ¹ Pustakaan Universiti Malaysia Sabah ² Pustakaan dibenarkan membuat salin ¹ Sgi		ja.
Sila tandakan (/)		
SULIT	(Mengandungi maklumat yang berdarjah keselamatan kepentingan Malaysia seperti yang termaktub di dalar AKTA RAHSIA RASMI 1972)	
TERHAD	(Mengandungi maklumat TERHAD yang telah ditent oleh organisasi/badan di mana penyelidikan dijalank	
TIDAK TERHAD		
Jug Ja	Disahkan oleh	
ANDATANGAN PENULIS)	(TANDATANGAN PUSTAKAWA)	5)
APAN; 88300 JUN	Collin Joseph Nama Penyelia	<u> </u>
IMPANG, SABAH		
28/03/2005	Tarikh: 28/03/2015	
ATAN: * Potong yang tidak berkenaan		

* Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi herkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

I declare that this work of project is on my own except adapted and abbreviation that every each of it has been stated the sources it is taken from.

31 March 2005

DESMOND JOHNNY CHONG HS2002-3710

1. SUPERVISOR

(Mr. Collin Joseph)

2. Examiner 1

(Mr. Moh Pak Yan)

Camp 111 411 2

3. Examiner 2

(Prof. Madya Dr. Masitah Yusoff)

4. Dean

(Prof. Madya Dr. Amran Ahmed)

man

Mashitahllusoff

Signature

4

ACKNOWLEDGEMENT

I would like to take this opportunity to appreciate everyone that involved directly as well as indirectly on helping hand on my project paper until I finally finished this thesis writing. A special thanks to my supervisor, Mr Collin Joseph for helping me a lot on giving an advice, guidance and encouragement along I am doing this projects. I also want to thanks to all lecturers, my program coordinator and not forget to Dean's of Sekolah Sains dan Teknologi(SST) for giving an encouragement and make my experiments and analyzed going smoothly with their support.

Special thanks also to all my friends that helping me a lot during I am doing my experiment and during the writing proses happen. A gratitude to all the lab assistants of SST, SKTM, and IBTP that helping me a lot while I am doing analysis and chemical preparation. I also want to give a special thanks to all my family members, start with my parents on giving me encouragement and advice, and to my siblings that supports me a lot during I am doing my final year project.

ABSTRACT

It is known that the porosity and adsorption capacity in a carbon that depended on the nature of precursors, pyrolysis and activation conditions, and the ash content. Porous carbons have been prepared from banana fruit (Musa Accuminata) in different temperature and time limits. The banana fruit has gone through carbonization before activation process occurs. Yield percentages shows that they were not many differences as moisture and ash gave higher percentages as temperature and time activation increase. Iodine number gives a low adsorption value, which is different in time and temperature in comparison. Methylene blue adsorption value shows the same configuration as iodine number. The SEM micrographs taken, proved the porosity of samples, which shows majority of mesopores and macropores volume. All the analyses have been compared with the Pharmaceutical activated carbon standards for medical grade activated carbon.

V

ABSTRAK

Diketahui bahawa keliangan dan kapasiti jerapan bagi sesuatu karbon aktif bergantung kepada kandungan bahan semulajadi, proses aktivasi dan kandungan debu karbon tersebut. Karbon aktif ini telah disediakan daripada buah pisang yang dijalankan aktivasi dengan masa dan suhu yang berbeza. Buah pisang telah dijalankan proses karbonisasi sebelum aktivasi dijalankan. Peratusan air hilang tidak menunjukkan banyak perubahan ketara diantara sampel bagi masa dan suhu yang berbeza. Manakala ujian kelembapan dan debu memberikan peratusan yang tinggi apabila suhu dan masa aktivasi meningkat. Nombor iodine memberikan nilai jerapan yang rendah yang mana ia berbeza dari segi masa dan suhu, dan begitu juga bagi proses jerapan metalene biru. Daripada mikrograf SEM yang diambil, adalah terbukti wujudnya liang-liang pada sampel terbabit yang menunjukkan kebanyakkan liang yang terhasil adalah berbentuk 'mesopores' dan 'macropores'. Semua keputusan analisa yang dijalankan adalah dibandingkan dengan nilai dalam 'Pharmaceutical Activated Carbon Standards'.

CONTENTS

	Page(s)
DECLARATION	ii
VERIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLE	xi
LIST OF FIGURE	xii
LIST OF PHOTO	xiii
LIST OF GRAPH	xiv
LIST OF APPENDIX	xv
CHAPTER 1 INTRODUCTION	
1.1 BACKGROUND	1-4
1.2 REASEARCH OBJECTIVE	4
1.3 SCOPE OF STUDY	5
CHAPTER 2 LITERATURE REVIEW	
2.1 ACTIVATED CARBON	6-8
2.2 MEDICAL GRADE ACTIVATED CARBON	9-10
2.3 ADSORPTION	10

2.3.1 Physical Adsorption	10-11
2.3.2 Chemical Adsorption	11
2.3.3 Adsorption Isotherm	12-13
2.4 PREPARATION OF ACTIVATED CARBON	13
2.4.1 Carbonization	13-15
2.4.2 Activation	15-17
2.4.3 Preparation of Medical Grade Active Carbon	18
2.5 ACTIVATED CARBON MATERIAL	18-20
2.5.1 Banana Fruit	21-22
2.5.2 Background of Banana	22-23
2.6 PRODUCTION OF ACTIVATED CARBON	23-25
2.7 USES OF ACTIVATED CARBON	25-26
2.8 RAW MATERIALS	26-27
2.9 CHARACTERIZATION OF ACTIVATED CARBON	27-28
2.10 MEDICAL GRADE	28-30
2.11 MANUFACTURER	30-31
2.12 SPECIFIC USES	31-32
2.13 ORGANIC RAMOVAL CAPABILITY	32-38
2.14 INORGANIC (NON-METAL) REMOVAL CAPABILITY	39-40
2.15 METAL REMOVAL CAPABILITY	40-41
2.16 MICROORGANISM REMOVALCAPABILITY	41-42
2.17 OTHER CARBON-BASED FILTERS	42-43
2 18 LIMITATIONS OF ACTIVATED CARBON	43

CHAPTER 3 METHODOLOGY

3.1 INSTRUMENTS AND APPARATUS	44
3.2 SAMPLE PREPARATION	45
3.2.1 Furnace	46
3.3 CHARACTERIZATION OF ACTIVATED CARBON SAMPLE	48
3.3.1 Methylene Blue	48-49
3.3.2 Iodine Adsorption	49-50
3.3.3 pH Determination	50
3.3.4 Determination of Moisture Content	51
3.3.5 Determination of Ash Content	51
3.3.6 Atomic Adsorption Spectrophotometer	52
3.3.7 Scanning Electron Microscope	53
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 PHYSICAL CHANGES DURING PYROLYSIS	55
4.2 pH TEST ON THE SAMPLE	57
4.3 MOISTURE CONTENT	58
4.4 ASH CONTENT	58
4.5 ADSORPTION STUDIES ON HEAT TREATED CHARS	59
4.5.1 Iodine Adsorption	59-60
4.5.2 Methylene Blue Adsorption	61-62
4.6 STRUCTURE OF ACTIVATED CARBON USING SEM TEST	62-63
4.7 METAL IMPURITIES OF ACTIVATED CARBON (AAS)	68

CHAPTER 5 CONCLUSION

REFERENCES

71-77

70

х

LIST OF TABLE

2.1 Activated carbon Pharmaceutical Industry Standards	12
2.2 Reactivations Process Specifics	18
3.1 The temperature and time in the muffle furnace	45
4.1 Yield, moisture and ash percentages, and pH of samples	56
4.2 Comparison of Iodine number and methylene blue adsorption	60
4.3 AAS results tested into samples	69

LIST OF FIGURE

1.1 View of Diamond Lattice and Graphite Lattice	2
1.2 Schematic Activated Carbon Model	7
3.1 Flow Chart	47

LIST OF PHOTO

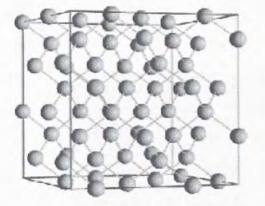
	Page
1.1 Activated Carbon	3
1.2 Activated Carbon Surface	3
1.3 Porosity of the Activated Carbon	7
1.4 Example of Carbonized Coconut	17
1.5 Example of Coconut Activated Carbon	17
1.6 Musa Accuminata (Pisang Berangan)	19
1.7 Grown Wild Banana	20
3.1 Green Banana with the samples size after being cut	48
3.2 Cary 50 Bio UV-Visible spectrophotometer	49
3.3 Orion pH Meter Model 420A	51
3.4 Perkin Elmer Atomic Adsorption Spectrophotometer	53
3.5 JEOL JSM- 5510 SEM	54
4.1 Structure of Banana Fruit Used	56
4.2 SEM micrograph of activated carbon of sample 1 (500°C 45mins)	64
4.3 SEM micrograph of activated carbon of sample 2 (500°C 1hrs)	65
4.4 SEM micrograph of activated carbon of sample 3 (600°C 45mins)	66
4.5 SEM micrograph of activated carbon of sample 4 (600°C 1hr)	67

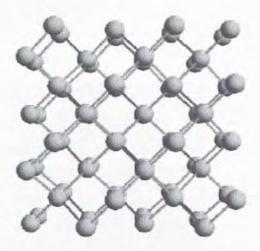
LIST OF GRAPH

4.1 Comparison graph among samples analyzed	59
4.2 Comparison graph among iodine number and methylene blue	61

LIST OF APPENDIX

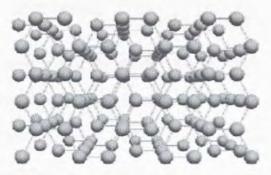
A. Yield percentage calculation	78
B. Moisture content calculation	79
C. Ash content calculation	80
D. Calculation on iodine adsorption	81
E UV-VIS calibration graph and methylene blue calculation	82-83


CHAPTER 1


INTRODUCTION

1.1 BACKGROUND


Carbon is an important chemical element, there is 9.5% of Carbon in the human body and 80-90% of our body is water and other elements. Carbon material is use in various fields especially in modern industrial practice and everyday life. Carbon can exist in a number of forms with either crystalline (i.e. diamonds and graphite) (Figure 1.1) or amorphous (without a regular shape) structures (charcoal). One of the carbon formations that is important to our life is activated carbon which has an amorphous structure. The amorphous forms of charcoal are generally obtained by heating or burning under controlled conditions carbonaceous materials such as coal, oil, wood, oil palm shells, nutshells, peat, lignite etc. The amorphous forms of carbon are carbon black, carbon fibers and porous carbons. Charcoal is a porous black amorphous impure form of carbon. It is made by heating organic material in the absence of air.


Activated carbon (Photo 1.1) is a processed carbon material with a highly developed porous structure and a large internal specific surface area. Activated carbon contain carbon compound the most and various other compounds which depends on the raw material. Activated carbon has the ability to absorb any kind of substances either from the gas or liquid phase. Activated carbon act as an adsorbent to the substances it adsorbed from. The ability for the activated carbon to adsorb depends on the surface structure (Photo 1.2) of the activated carbon itself (Helena *et al.*, 1991).

Diamond lattice

Graphite lattice

Figure 1.1 View of Diamond lattice and Graphite lattice

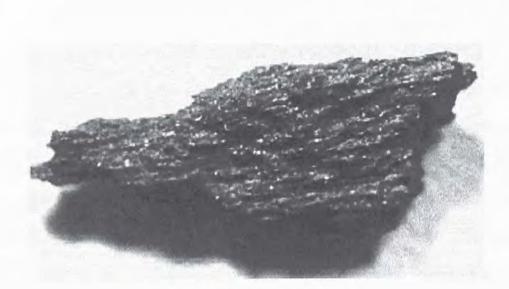


Photo 1.1 Activated carbon

Photo 1.2 Activated carbon surface

Activated carbon has been used since ancient time to purify air and water. However, the commercial use of activated carbon began at the end of the 18th century when the Swedish chemist Karl Wilhelm Scheele discovered (1773) the phenomenon of adsorption of gases on charcoal. Then soon after that the activated carbon when immersed in tartaric acid solution, decolorizes it by adsorbing the organic contaminant presents. This lead to the first industrial application of charcoal in the sugar industry in England in 1794 used as a decolorizing agent for sugar syrup. Since then there are many more discoveries made by chemist to use activated carbons (Richard, 1999).

Granular activated carbon was first developed as a consequence of WWI for gas masks and has been use subsequently for water treatment, solvent recovery and air purification. It is being used when the German armies introduce chemical welfare for the first time against the British and French in the West and against Russian soldiers in the East. This kind of mask, which is used to protect the soldiers respiratory tracts throughout the world to the present day. During that time, coconut shell is the famous raw materials for the production of activated carbon. Led from the accident bring researcher which conduct in 1930's developed new technologies for obtaining granulated active carbons of supersorben and benzosorben type (Helena *et al.*, 1991).

From that time, activated carbon has been an effective substance for any adsorbing material and research for industry has conducted and from time to time found many uses of activated carbon such as water treatment, odor removal, color removal, medical and pharmaceutical grade, solvent recovery, and much more industrial applications uses.

1.2 RESEARCH OBJECTIVES

The objectives of this research are:

- i. To prepare the medical grade activated carbon prepared from banana fruit.
- To characterize the prepared activated carbons using Iodine Number and Methylene Blue identification.

1.3 SCOPE OF STUDY

These projects is focus on the study of banana fruit as a raw material of the activated carbon and go through physical activation process with a different of times and without any chemical activation involved. Prepared activated carbon then characterize using iodine adsorption and methylene blue adsorption for the performance of the activated carbon.

CHAPTER 2

LITERATURE REVIEW

Activated carbon is used extensively in many fields and most carbon materials can be used to make activated carbon. The academic literature contains many references to activated carbon derived from many agricultural and industrial high-carbon waste products. Commercial activated carbon however is manufactured from only a few carbon sources such as wood and sawdust, oil palm shells, peat, coal, coke, and some other material used.

2.1 ACTIVATED CARBON

Activated carbon is an effective absorbent primarily due to its extensive porosity (Photo 1.3) and has a very large surface area. You can imagine activated carbon as a magnet that will attract the metals (adsorbate) around it. The high effectiveness of activated carbon is all depending on the surface structure of the activated carbon that consist of the surface area and porosity of the activated carbon (Figure 1.2).

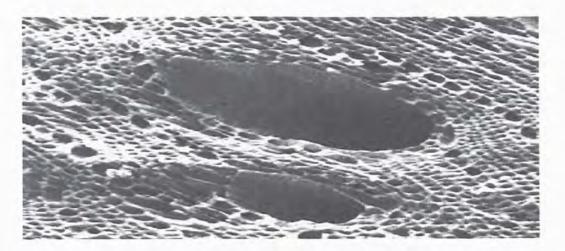


Photo 1.3 Porosity of the activated carbon

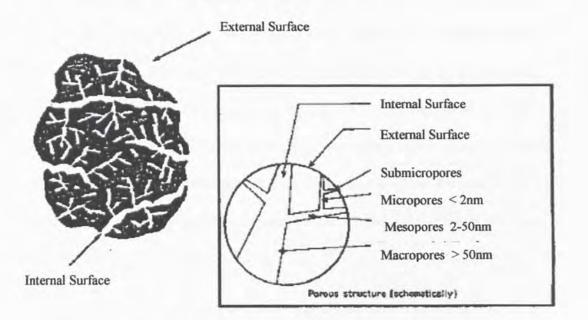


Figure 1.2 Schematic activated carbon model

The surface area of the activated carbon is where the adsorption will occur. Surface area and adsorption properties are related. It is because if the surface area of the activated carbon is large, the adsorption properties will be more effective. The interesting part of activated carbon surface structure is when 1 teaspoon of activated carbon would exhibit a surface area equivalent to a football field. These are happen when we realize that the activated carbon looks granular and exist in a small size. But because of the activated carbon itself have many pores inside, the activated carbon makes it look smaller but if we count the surface area including the porosity it made, it has a very high surface area that can cover a football field. So from here, we know that surface area and porosity are related where if the porosity of the activated carbon is higher, the surface area of the activated carbon will be larger (Helena *et al*, 1991).

Activated carbon has the ability to adsorb well because of its porosity structure. There are 3 main types of pores that are cover micropores, mesopores and macropores. Every type of this pores play different roles in any of the adsorption process for vapour and gases. The classification of the pores type is usually based on their linear dimensions. According to the IUPAC classification of pores in adsorbents, pores with the radii below 2nm are called as micropores, radii lying between 2-50nm called as mesopores and radii greater than 50nm are called macropores. The total number of pores and their volume distribution depends mainly on the nature of the raw material used and on the physico-chemical parameters of activation processes (Helena *et al.*, 1991).

The important of both porosity and surface area are no doubt for its ability to adsorb and the adsorption properties. So to understand the activated carbon, we firstly need to know how the surface structure of the activated carbon and it is all depending on the raw material used for making the activated carbon. This is because different raw material gives a different surface area and porosity of the activated carbon (eMedicine, 2004).

REFERENCES

- Abdul H. M. and Campbell W. R., 1995, Pentachlorophenol Adsorption and Desorption Characteristics of GAC-I Isotherms, Department of Chemical Engineering and Biotechnology Research Centre, University of Waterloo, Canada
- Abuzald N.S., and G.F. Nakhla, 1994, Dissolved oxygen effects on equilibrium and kinetics of phenolics adsorption by activated carbon. *Environmental Science & Techonology* 28 (2), 216-221.
- Adham, S.S., V.L. Snoeyink, M.M. Clark, and J.L. Bersillon., 1991, Predicting and verifying organics removal by PAC in an ultrafiltration system. *Journal of the American Water Works Association* 83, 81-91.
- Anderson, M.A. and Rubin, A.J., 1981, Adsorption of inorganics at solid-liquid interfaces. Ann Arbor Science Publishers, Inc., Ann Arbor, MI.
- Anuar K., Collin G.J., Zulkarnain Z., Hussein M.Z., Haron M.J. and Abdullah A.H.,
 2003, Surface Area and Porosity Studies of Activated Carbons Prepared from
 Oil Palm Shells (Elaeis Guineenses) using Physical and Chemical Activators
 such as CO₂, H₃PO₄, K₃PO₄, AND KOH, Asean Journal Of Science And
 Technology For Development, 20 (2), 149-158

- Anuar K., Collin G.J., Zulkarnain Z., Hussein M.Z., Haron M.J. and Abdullah A.H., 2004, Activated Carbons Prepared from Oil Palm Shells: Application for Column Separation of Heavy Metals, Indian Chemical Society, (in press).
- Bell, F.A., Jr., 1991, Review of effects of silver-Impregnated Carbon Filters on Microbial Water Quality. Journal of the American Water Works Association 83 (8), 74-76.
- Blocki, S. W., 1993, Hydrophobic zeolite adsorbent: a proven advancement in separation technology. *Environmental Progress* 12 (3), 226-230.
- Bruce J.C and Barb J.M, 2001. Integrated Cardiopulmonary Pharmology, Prentice Hall.
- Chin, K. K., 1989, Performances of charcoal chip and sand packed anaerobic reactors. Water Science & Technology 21, 1677-1680.
- Collins, M.R., T.T. Eighmy, J.M. Fenstermacher, Jr. and S.K. Spanos., 1992, Removal of natural organic matter by conventional slow sand filtration. *Journal of the American Water Works Association* **84** (5), 80-90.
- Crittenden, J.C., K. Vaitheeswaran, D.W. Hand, E.W. Howe, E.M. Aieta, C.H. Tate, M.J. McGuire and M.K. Davis, 1993, Removal of dissolved organic carbon using granular activated carbon. *Water Research* 27 (4), 715-721.
- Dahab, M.F., H.L. Becker, and T.E. Riley, 1991, Treatment of a wood products superfund wastewater: a case study. *Canadian Journal of Civil Engineering* 18, 654-662.

DeSilva F., 2000, Activated Carbon Filtration, Water Quality Products Magazine.

Diab, S., M. Kochba, and Y. Avimelech, 1993, Development of a biofilter for turbid and nitrogen-rich irrigation water; b. removal of phosphorus, algae and clay. *Bioresource Technology* 44 (2), 137-140.

Ee Lin Wan, 2002. Gone Bananas, http://www.thingsasian.com

- eMedicine, 2004. Activated Charcoal, How Activated Charcoal Works, http://www.emedicinehealth.com
- Fox, P., M.T. Suidan, J.T. Pfeffer and J.T. Bandy, 1990, Hybrid expanded-bed GAC reactor for treating inhibitory wastewaters. *Journal of Environmental Engineering* 116 (3), 438-453.

Gessner P.K. and Hassan M.M., 1987, Journal Pharmacy Science, 76

George T.A., 1984, Shreve's Chemical Process Industries, 5th edition, McGraw-Hill Book Company

Hajratwala B.R., 1982, Journal Pharmacy Science, 71

Helena J., Andrzej S., Jerzy C., 1991. Active Carbon, Ellis Horwood Limited.

Kannisto H. and Neuvonen P.J., 1984, Journal Pharmacy Science, 73

Koch, B., M. Ostermann, H. Hoke, and D.-C. Hempel, 1991, Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogencontaining aromatic compounds. *Water Research* 25 (1), 1-8.

- Lowengart, A., S. Diab, M. Kochba, and Y. Avnimelech, 1993, Development of a biofilter for turbid and nitrogen-rich irrigation water; a: organic carbon degradation and nitrogen removal processes. *Bioresource Technology* 44, 131-135.
- Martin A., 1993, Physical Pharmacy, Physical Chemical Principles in the Pharmeceutical Sciences, Lippincott Williams and Wilkins Co.
- Meenakshi G., Sukhmehar S. and Roop C., 2004, Equilibrium and Dynamic Adsorption of Methylene Blue from Aqueous Solutions by Surface Modified Activated Carbon. *Carbon Science Journal*, 5(4), 170-179.

Mick J. S., 2001, Mosby's Paramedic Textbook, Mosby Inc, 2nd Edition.

- Moore, J.C., D.J. Hansen, R.L. Garnas, and L.R. Goodman, 1985, A sand/granular carbon filtration treatment system for removing aqueous pesticide residues from a marine toxicology laboratory effluent. *Water Research* **19** (12), 1601-1604.
- Morten I.K.M. and Hall J.M, Medicines, The Comprehensive Guide, 3rd edition, Book Creation Services Limited, London.
- Najm, I.N., V.L. Snoeyink, and Y. Richard, 1993, Removal of 2,4,6-trichlorophenol and natural organic matter from water supplies using PAC in floc-blanket reactors. *Water Research* 27 (4), 551-560.

- Namasivayam, C., and K. Periasamy, 1993, Bicarbonate-treated peanut hull carbon for mercury (II) removal from aqueous solution. Water Research 27 (11), 1163-1168.
- Nelson, P.O. and M. Yang, 1995, Equilibrium adsorption of chlorophenols on granular activated carbon. *Water Environment Research* 67, 892-898.
- Rael, J., S. Shelton, and R. Dayaye, 1995, Permeable barriers to remove benzene: candidate media evaluation. *Journal of Environmental Engineering* 121 (5), 411-415.
- Raynolds, Tom D. & Richards, Paul A. Unit Operations and Processes in Environmental Engineering, 2nd ed. PWS Publishing Co.
- Richard C.K., 1999, Activated Charcoal: Universal Antidote and Detoxifier That Extends Life, SamrtBodyz Nutrition.
- Rybolt T.r., Burrell D.E., Shult J.M. and Kelly A.K., 1986, Journal Pharmacy Science, 75
- Satish M., Jignesh H. B., Lalit M. M. and Jasara R.V., 1997, Preparation and Characterization of Activated Carbon from Banana Stem, *Carbon Science Journal*, 118-119

- Satish M., Jignesh H. B., Lalit M. M., 2002, Studies on Pyrolysis Behaviour of Banana Stem as Precursor for Porous Carbons, *Carbon Science Journal*, 2 (2), 91-98.
- Satish M., Vanraj B. and L.M. Monacha, 2002, Porosity Development on Activation of Char from Dry and Wet Babbool Wood, *Carbon Science Journal*, 3(3), 133-141.
- Selim, M.I. and J. Wang, 1994, Fate of atrazine in biologically active granular activated carbon. *Environmental Toxicology and Chemistry* 13 (1), 3-8.
- Servais, P., G. Billen, C. Ventresque, G.P. Bablon, 1991, Microbial activity in GAC filters at the Choisy-le-Roi Treatment Plant clarifier. *Journal of the American Water Works Association* 83 (2), 62-68.
- Sharma, D. C., and C. F. Forster, 1993, Removal of hexavalent chromium using sphagnum moss peat. Water Research 27 (7), 1201-1208.
- SIRIM, 1984, Specification of powdered Activated Carbon, ms. 873: 1984. Standard and Industrial Research Institue Malaysia.
- Srinivasakannan C, Mohammad Z. A. B., 2003, Production of Activated Carbon from rubber wood sawdust, *Biomass and bioenergy* 27, 89-96.
- Steve and Erika, 1997, Water Treatment Plant, Activated Carbon, http://ewr.cee.vt.edu/environment

Theodore L B., Eugenes H L., Jr Bruce E. B., Chemistry the Central Science, Prentice Hall, Eagle Wood Cliffs

Tsuchiya T. and Levy G., 1972, Journal Pharmacy Science, 61

- Vel Lietner, N.K., J. De Laat, M. Dore, H. Suty, and M. Pouillot, 1994, Inorganic and organic by products of the reactions between chlorite, activated carbon and phenolic compounds. *Environmental Science & Technology* 28 (2), 222-230.
- Wenming Q., Qingfang Z., Licheng L., Lang L., 1995, Preparation and Properties of Pitch Based High Specific Surface Area Activated Carbon, *Carbon Journal*, 400-401.
- Yang, O.B., J.C. Kim, J.S. Lee, and Y.G. Kim, 1993, Use of activated carbon fiber for direct removal of iodine from acetic acid solution. *Industrial Engineering and Chemistry Research* 32, 1692-1697.
- Ying W.c., E.A. Dietz, and G.C. Woehr, 1990, Adsorptive capacities of activated carbon for organic constituents of wastewaters. *Environmental Progress* 9(1), 1-9.
- Zeid N. A., G. Nakhla, S. Farooq and E. Osei-Twum, 1992, Activated Carbon Adsorption In Oxidizing Environments, Department of Civil Engineering and Research Institute, King Fahd University of Petroleum and Minerals, Saudi Arabia.

