SIMULATION OF THE TUNNEL JUNCTION IN TOP CELL OF THE InGaP/GaAs/Ge MULTIJUNCTION SOLAR CELLS USING ATLAS SOFTWARE

YONG SING YING

THE THESIS IS SUBMITED IN FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN PHYSICS WITH HONOUR

PHYSICS WITH ELECTRONICS PROGRAMME SCHOOL OF SCIENCE AND TECHONOLOGY UNIVERSITY MALAYSIA SABAH

April 2008

PUMS99:1

UNIVERSITI MAŁAYSIA SABAH

DDUL.	the aller		00		0	coil	24.5		0.11
4	nGap/GaA	s/Ge	mutiju	nction	20101	r cerrs	Using	HTLAS	Softi
JAZAH:	Sarjana	mud	la Souns	Den	gan	kepuj	ian		
SAYA	YONG	SING HURUF	VING- BESAR)	_		SESI PEN	GAJIAN:_		
nengaku me Malaysia Sa	embenarkan tesis bah dengan syar	at-syarat l	Sarjana/ Dok kegunaan se	tor Falsa perti ber	ifah) ini ikut:-	disimpan	di Perpustak	aan Univer	rsiti
1. Te 2. Pe	esis adalah hakm rpustakaan Univ haia	ilik Unive ersiti Ma	ersiti Malays laysia Sabah	ia Sabal dibenar	n. Ikan me	mbuat salii	nan untuk tu	juan pengaj	jian
3. Pe pe 4. Si	rpustakaan diber ngajian tinggi. la tandakan (/)	narkan me	embuat salin	an tesis	ini seba	gai bahan j	pertukaran a	ntara institu	utsi
	SULIT		(N K	fengand	ungi ma gan Mal	aklumat ya aysia seper	ng berdarjah ti yang term	keselamat aktub di da	an atau ilam
	TERHAD		(M ol	lengand	ungi ma	klumat TE	RHAD yang na penyelidi	g telah diter	ntukan kan)
	TIDAK TE	RHAD				Dis	ahkan Oleh	in an	
6	May.								_
(TANDA	PANGAN PENI	ULIS)	17		T)	ANDATA	NGAN PUS	STAKAWA	(N)
Jamat Teta JIn Ron Mm	Tmn Hif Sorawok.	3133 ix,980	000				Nama	a Penyelia	-
arikh: 3	15/08				Tai	rikh:	_		
CATATAN:	 *Potong yang t **Jika tesis ini S /organisasi be dikelaskan se @Tesis dimaks penyelidikan 	idak berk SULIT ata rkenaan o bagai SUI udkan seb atau diser	enaan. au TERHAD dengan meny LIT dan TEF pagai tesis ba tai bagi penj	, sila lar vatakan s CHAD. ogi Ijaza gajian se	npirkan sekali se h Dokto ccara ke	surat darij bab dan te or Falsafah rja kursus o	oada pihak b mpoh tesis i dan Sarjana dan Laporan	erkuasa ni perlu secara Projek Sar	jana

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been fully acknowledge.

4 April 2008

YÖNG SING YING HS2005-4464

CERTIFICATION

1. SUPERVISOR

(Mr. Alvie Lo Sin Voi)

2. **EXAMINER 1**

(Associate Prof. Dr. Abdullah Chik)

EXAMINER 2 3.

(Dr. Haider F. Abdul Amir)

DEAN 4.

(SUPT/KS Associate Prof. Dr. Shariff A.K Omang)

Signature leef CG:

SHON MARIN 2

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I am deeply indebted to my supervisor Mr. Alvin Lo Sin Voi who gave me stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis.

I want to thank to School of Science and Technology, University Malaysia Sabah for giving me permission to commence and opportunity to do this research study. Besides that I would like to School of Engineering and Information Technology for allow me to use the lab. And thanks to the lecturer and lab assistant for their help.

I have furthermore to thank the lectures of School of Science and Technology, Prof Datuk Dr. Hj. Mohd. Noh Bin Dalimin, Associate Prof. Dr. Abdullah Chik, Associate Prof. Dr. Jedol Dayou, Prof. Dr. Fauziah Hj. Aziz, Dr. Haider F. Abdul Amir, Miss Fauziah Sulaiman, Mr. Shaafie Salleh, and Madam Teh Mee Teng.

Especially, I would like to give my special thanks to my parents, my brothers and sisters, and my friends for their patient love, stimulating suggestions, and help in difficult times, and patience throughout my study in University Malaysia Sabah.

ABSTRACT

Silvaco work with Atlas was selected for modeling of the advanced solar cells because of the suite of tools and reusable models. Specific models of tunnel junction in the InGaP/GaAs/Ge of multijunction solar cells are prepared and simulated. The exotic materials used in such designs were identified and all their major electrical and optical parameters were researched or derived. Besides that, software code was developed to adjust and calibrate Atlas for the task of simulating solar cells. The scope of this research is focus on the tunnel junction. The major stages of the process are explained and the simulation results are compared to experimental data. Finally the example results are shown throughout the whole process. Through the research, the tunnel junction is simulated with the absent of Power files codes in the source code. The graph have the range of the voltage is from 0 V to 1.4 V and the current range from 0 A to 60 A.

MENSIMULASI SEL TERATAS SIMPANG TEMBUSAN PADA SEL SURIA SIMPANG BERGANDA InGaP/GaAs/Ge DENGAN MENGGUNAKAN PROGRAM ATLAS

ABSTRAK

Silvaco dengan perisian Atlas digunakan untuk memodelkan sel suria lanjutan kerana ia merupakan peralatan yang lebih sesuai dan model yang boleh digunakan semula. Model spesifik yang digunakan ialah simpang sel suria berganda InGaP/GaAs/Ge disediakan dan disimulasikan. Rekabentuk bahan asing dalam kajian ini dapat dikenalpasti serta elektrik majoriti dan parameter optik dapat dikaji dan deduksikan. Selain itu, kod program dapat direka untuk mengubah dan menandakan skala pengukuran Atlas bagi tujuan simulasi sel solar. Skop kajian adalah fokus pada simpang tembusan. Kaedah utama proses diterangkan dan keputusan simulasi dibandingkan dengan data eksperimen. Akhir sekali , keputusan ditunjukkan melalui keseluruhan proses. Beberapa ciri-ciri elektrik dikenalpasti. Simpang tunnel telah disimulasikan tanpa menggunakan kod fail kuasa. Graf yang diperolehi mempunyai julat voltan dari 0 V sehingga 1.4 V dan julat arus adalah dari 0 A sehingga 60 A.

CONTENTS

			Page
FRO	NT PA	GE	i
DEC	LARAT	ΓΙΟΝ	ii
CER	TIFICA	ATION	iii
ACK	NOWL	LEDGEMENTS	iv
ABS	TRACI	Γ	v
ABS	TRAK		vi
TAB	LES OI	F CONTENTS	vii
LIST	OFTA	ABLES	x
LIST	OF FI	GURES	xi
LIST	OF SY	MBOLS AND ABBREVIATIONS	xiv
LIST	OF AF	PPENDIX ES	xvii
CHA	PTER	1 INTRODUCTION	
1.1	Gene	eral Statement	1
1.2	Obje	ctive	3
1.3	Scop	e	3
1.4	Нурс	othesis	4
CHA	PTER	2 LITERATURE REVIEW	
2.1	Intro	duction to semiconductor	5
	2.1.1	Crystal Structure	8
	2.1.2	Carriers	9
	2.1.3	Fermi Level	15
	2.1.4	Mobility	18
	2.1.5	Recombination	20
	2.1.6	Tunneling	22
2.2	The l	P-N Junction	24
	Ι	Forward Bias	26
	Π	Reverse Bias	27
	III	Breakdown	27

IV	Characteristics of Light	28
v	Semiconductor-Metal Junction	30
2.2.1	Ohmic Contact	31
2.2.2	Tunnel Junction	33
2.2.3	Thickness	34
2.2.4	Voltage	37
2.2.5	Direct and Indirect Tunnel	38
2.2.6	Heterojunction	39
Solar	Cells	40
2.3.1	Optical Properties	41
2.3.2	Multijunction Solar Cells	42

CHAPTER 3 METHODOLOGY

2.3

Intro	oduction	45
Mate	erials and Equipments	45
Wor	king with ATLAS	45
1.	Mesh	46
2.	Region	47
3.	Electrodes	47
4.	Doping	48
5.	Material Properties	48
6.	Models	48
7.	Light	48
8.	Simulation Results	49
	Intro Mate Wor 1. 2. 3. 4. 5. 6. 7. 8.	Introduction Materials and Equipments Working with ATLAS 1. Mesh 2. Region 3. Electrodes 4. Doping 5. Material Properties 6. Models 7. Light 8. Simulation Results

CHAPTER 4 RESULTS AND DICUSSIONS

4.1	Introd	luction	50
4.2	The M	Acchanically Stacked Tandem Cell	52
	4.2.1	Mesh, Region, Electrode and Doping	53
	4.2.2	Material Properties, Models and Lights	61
4.3	Tunne	el Junction	64
	4.3.1	Mesh, Region, Electrode and Doping	65
	4.3.2	Material Properties, Models and Lights	69

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusion	76
5.2	Recommendations	77
REF	FERENCES	78
APPENDIXES		80

LIST OF TABLES

Table Description

Page

2.1	Gallium arsenide compared with silicon at 300K	20
4.1	Recombination Models	62
4.2	Function of power files	71

LIST OF FIGURES

Figure Description Page 1.1 Tunnel junction on InGap/GaAs/Ge 4 2.1 Electrical conductivity in a conductor, semiconductor, and insulator 6 7 2.2 Transition of an electron form one shell to another 9 23 Three types of cubic unit cells 2.4 The diamond like structure of a crystal of semiconductor. Each atom has four nearest neighbours to which it is bound by covalent bonds. 10 2.5 A diagram of a crystal lattice: (a) at low temperature when all the electrons are held in covalent bonds; (b) at a higher temperature when some electrons have escaped, leaving holes behind. 13 2.6 Doping a silicon crystal 14 2.7 Fermi-Dirac distributions of electron energies around the Fermi level: (a) at two different temperatures; (b) superimposed at a particular temperature on band structure of pure silicon; (c) superimposed on *n*-type silicon with its raised Fermi level giving increased density in the conduction band and decreased density in the valence band. 16 2.8 (a) Radiative recombination in a direct band-gap semiconductor 21 22 (b) Indirect Recombination 2.9 Band diagram of two close- by semiconductor 23 (a) Tunneling as probability 23 23 (b) Tunneling as wave function 2.10 24 A pn junctions 2.11 Drift and diffusion currents in a pn junction 26 2.12 (a)Forward Bias 26 (b)Reverse Bias 27 The I-V characteristics if the semiconductor diode 2.13 27 Dark (blue) and illuminated (red) characteristics curve of solar cell 2.14 29 (a) Band structure semiconductor and metal (closer distance) when they 2.15 are still separated, $e\phi_m$ is the metal work function and e_{χ} the

semiconductor electron affinity.

	(b) Band structure semiconductor and metal (contact between) when they	
	are still separated.	31
2.16	Band diagrams of (a) Schottky and (b) tunneling Ohmic junction	32
2.17	A schematic diagrams showing the tunneling of a particle through a	
	potential barrier. The wave function inside the barrier is a decaying	
	function.	33
2.18	Simplified energy band diagrams of tunnel diode at (a) reverse bias;	
	(b) thermal equilibrium. Zero bias; (c) forward bias such that peak	
	current is obtained; (d) forward bias such that valley current is approached;	
	and (e) forward bias with thermionic current flowing.	34
2.19	Partial transmission of an electron beam trough a narrow potential barrier	35
2.20	I-V characteristic of tunnel junction	38
2.21	A solar cells formed from a p-n junction. When sunlight strikes it, the	
	solar cell acts like a battery, with + and - terminals.	40
2.22	Refraction and reflection at an interface, here when medium 2 has the	
	higher refractive index.	41
2.23	Refraction occurs because wave speed and wavelength differ in the two	
	media.	42
2.24	Absorption energies and wavelengths for GaInP, GaAs and Ge on AM0	
	(air mass zero) spectrum	43
2.25	Tandem cells	44
3.1	Typical Mesh	46
3.2	Specification of the Region	47
3.3	Electron concentration diagram and I-V schematic diagram	49
4.1	Spectrolab's multijunction cell	51
4.2	Whole structure of the multijunction cell	52
4.3	The structure after define the mesh, region, electrodes and doping	55
4.4	Typical Mesh for whole structure	56
4.5	Typical meshes for two cells	57
4.6	(a)The expended view of the multijunction cell	58
	(b) Expanded view between the junction	58
4.7	The order of each layer with the specified thickness and electron	
	concentrations.	59

4.8	Graph of Light intensity	63
4.9	A tunnel junction	64
4.10	Structure of the tunnel junction	64
4.11	A region of a tunnel junction	66
4.12	General visualization of tunneling	66
4.13	A typical mesh of tunnel junction	68
4.14	Graph of light intensity for tunnel junction	70
4.15	AM0 and AM1.5 solar spectrum distributions	72
4.16	I-V Curve of the tunnel junction	74
4.17	<i>I-V</i> characteristics of the tunnel junction	74

LIST OF SYMBOLS AND ABBREVIATIONS

LEK	Liquid encapsulated Kyropoulus
VGF	Vertical Gradient Freezing
EHP	Electron Hole Pair
Ga	Galium
In	Indium
As	Arsenide
Ge	Germanium
Si	Silicon
ρ	decaying wave vector inside the barrier
L	width of the potential barrier
E	electric field
E	Energy
Eg	Energy gap
E_F	Fermi level energy
hv	photon energy
р	proton
n	neutron
n	electron density
р	hole density
eV	electron volts
p_0	hole densities
N _d	donor density
no	electron densities

n _i	intrinsic carrier density
Т	Kelvin
k _B /k	Boltzmann's constant $(1.38 \times 10^{-23} JK^{-1})$
P(E)	probability of an energy level
V-I	current voltage
μ	mobility
μ_n	electron mobility
μ_p	hole mobility
FF	Fill factor
f	Fermi direct distribution
fk	function that depends on time, space and momentum
f_p	Fermi function in the proton
fn	Fermi function in the neutron
Vγ	offset voltage
V_Z	Zener voltage
I_s	small reverse saturation current
I_d	diffusion current
$e\phi_m$	metal work function
ех	electron affinity
k _e	initial electron momentum
k _{ph}	phonon momentum
с	speed of light
v	wavelength
n	index of refraction

XV

Isc	short circuit voltage
Imax	maximum current
Pinc	incident power
P _{max}	maximum power
V _{max}	maximum voltage
Voc	open circuit voltage
η	power conversion efficiency
ħ	Planck constant
α	alpha
β	beta

LIST OF APPENDIXES

Appendix	Description	Page
А	Complete Source Code of The Whole Structure	79
В	Tunnel Junctions Source Code	83
С	Some Physical Constants	86
D	SI Metric	86
E	SI Derived Units	87
F	Magnitude Prefixes	89

xvii

CHAPTER 1

INTRODUCTION

1.1 General Statement

The generation of voltage when a device is exposed to light is known as the photovoltaic effect. A solar cell is a p-n junction device with no voltage applied directly across the junction. A solar cell converts photon power to the load.

Since solar cell is used as a power generating source, the series resistance is a critical factor. The main steps of photovoltaic power generation are (i) light absorption to produce excess carriers, followed by, (ii) the separation of these carriers.

The development of growth technologies to manufacture high quality and high-purity crystals during the last century possible the fabrication of electronics and optoelectrics devices can only be fabricated from high-quality materials that are grown under well-controlled conditions. Bulk crystals growth techniques include liquidencapsulated Kyropoulos (LEK), and vertical gradient freezing (VGF) methods. There are also many improved methods available for the growth of bulk semiconductor crystals.

Tandem cells have been developed in a variety of materials combination. Two terminal designs have been more widely studied than four terminal design, because of the technologically appealing possibility of integrating different junctions in a single multilayer device by using 'tunnel junction' to connect different p-n junctions. The tunnel junction is a heavily doped n-p junction which is generally assumed to introduce an Ohmic contact between the p terminal of one cell and the n terminal of the next. III-V materials are preferred on account of the high absorption coefficient and the possibility of tuning the band gap by compositional variation of ternary and higher alloys.

The Tunneling effect was first reported by Esaki in 1959 in a narrow germanium pn junction. So far, there are many devices based on the Tunneling effect such as resonant tunneling diodes, point contact diodes, Schottky diodes, bipolar transistors, and field-effect transistors. One important feature of the Tunneling effect is that the Tunneling time of carriers is proportional to the function $\exp(-2\rho L)$, where ρ equal to the decaying wave vector inside the barrier and L is stand width of the potential barrier. The wave functions of the tunneling carriers are characterized as propagating waves in the wells and evanescent waves inside the barriers.

The ATLAS device simulator from Silvaco International has the capability has to model a wide variety of physical device characteristics. It is predicts the electrical characteristics of physical structures by simulating the transport of carriers through a 2D grid. Band gap, electron and hole state densities, electron and hole motilities, permittivity, electron affinity, radioactive recombination rate and optical parameters are all important parameters needed for solar cell in ATLAS. This software was also

used to modify and calibrate parameter values in modeling advanced solar cells. Such parameters include electrical and optical properties of exotic materials, usually use in high-cells. At most they continue to be studied by the photovoltaic community; their properties must be interjecting from the properties components. Due to the nonlinearity participated, several bowing parameters are applied in more complex interjection functions.

By applying same approach, an InGaP cell is formed. Both cells are then placed in a mechanically stacked configuration to investigate shadowing phenomena. An appropriate tunnel junction is also developed to electrically interconnect the two cells, forming in a invention of a multijunction cell. The dimensions and structural characteristics used are identical to those in published cells. The fact that the results also match is a good indication of the validity of this methodology.

1.2 Objective

The research issues addressed in this thesis research to simulate the top cell of tunneling junction in InGaP/GaAs/Ge multijunction solar cells by using ATLAS software.

1.3 Scope

The scope of this research is modeling the tunnel junction on the top cell of the InGaP/GaAs/Ge multi junction solar cells. It shown as the figure below:

Figure 1.1 Tunnel junction on InGaP/GaAs/Ge (Panayiotis Michalopoulos, 2002)

1.4 Hypothesis

In the small of thickness, the value of the voltage is proportionally to the current when under the absent of the light.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Semiconductor

The various materials can be categorized according to their electrical properties as conductors (metals), semiconductors (metalloids) and insulators (nonmetals).

Conductors (metals). No gap between the valence and conductions bands of a conductor, thus electrons flow when even a tiny electrical potential different is applied. Greater random motion of the atoms hinders electron movement when the temperature rising, which decreases the conductivity of a metal.

Semiconductors (metalloids). In a semiconductor, a relatively few energy gap appears between the valence and conductions bands. Thermally excited electrons can cross the gap, allowing a small current to pass. Thus, in contrast to a conductor, the conductivity of a semiconductor increases when it is heated.

Insulators (nonmetals). In an insulator, the large gaps between the bands make the electron hard to jump even when the substance is heated, so no current is observed.

Figure 2.1 Electrical conductivity in a conductor, semiconductor, and insulator. Band theory explains differences in electrical conductivity in terms of the size of the energy gap between the material's valence and conduction bands. (Silberberg, 2003)

Niels Bohr (1885-1962) proposed three postulates:

- The H atom has only certain allowable energy levels, which Bohr called stationary states. Each of these states is associated with a fixed circular orbit of the electron around the nucleus.
- The atom does not radiate energy while in one of its stationary states. That is, even though it violates the ideas of classical physics, the atom does not change energy while the electrons move within an orbit.
- 3. The atom changes to another stationary state(the electron moves to another orbit) only by absorbing or emitting a photon whose energy equals the difference in energy between the two states:

$$E_{photon} = E_{stateA} - E_{stateB} = hv$$
(2.1)

where the energy of state A is higher than that of state B. A spectral line results when a photon of specific energy (and thus specific frequency) is emitted as the electron moves from a higher energy state to a lower one. Therefore, Bohr's model explains that an atomic spectrum is not continuous because the atom's energy has only certain discrete levels, or states. (Silberberg, 2003)

REFERENCES

- Allison, J., 1990, *Electronic Engineering Semiconductors and Devices*, Mc-Graw-Hill Book Company, UK.
- ATLAS User's Manual Device Simulation Software Volume 1, Silvaco International
- Barl-Lev, A., Semiconductor and Electronics Devices, 1979, Prentice-Hall International, Inc., London.
- Brendel, Rolf., 2003. Thin-Film Crystalline Silicon Solar Cells, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Earl, B.& wilford, L.D.R, 2002. IGCSE Chemistry. John Murray Ltd, London.
- Halliday, D., Resnick, R. and Walker, J., 2001. Fundamentals of Physics.6th Ed. John Wiley & Sons, New York.
- Hess, K 2000. Advance Theory of Semiconductor Devices. Institute of Electrical and Electronics Engineers, Inc., New York.
- Manasreh, O.,2005. Semiconductor Heterojunctions and Nanosturctures. McGraw-Hill Companies, Inc, New York.
- Pierret, R., Semiconductor Device Fundamentals, 1996. Addison-Wesley Publishing Company, Inc., USA.
- Rizzoni,G. 2003. Principles and Applications of Electrical Engineering, 4th Ed. McGraw-Hill Companies, Tnc., New York.

Sparkes, J., 1994. Semiconductor Devices, 2nd Ed. Chapman & Hall university and Professional Division, UK.

Storey, N, 2004. Electrical & Electronic Systems. Pearson Education Limited, UK.

Sze, S., 1990. High-Speed Semiconductor Devices. John Wiley & Sons, Inc. Canada.

Sze, S., 2001 Semiconductor Devices , Physics and Technology 2nd Ed.. John Wiley & Sons, Inc., USA.

TCAD WORKSHOP USING SILVACO TCAD TOOLS Volume III, Silvaco International

