FACTORS AFFECTING THE FORMATION OF TRIHALOMETHANES DURING WATER CHLORINATION: A BENCH-SCALED STUDY

LEE CHEONG HONG

DISSERTATION SUBMITTED AS PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

INDUSTRIAL CHEMISTRY PROGRAMME SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH

MAY, 2008

PUMS99:1

UNIVERSITI MAŁAYSIA SABAH

JUDUL: FART	OK. MENY	EBABE	AN PEN	BEIN	DICKHIN	TRIHALOM	EVAN
SEMASA	PEINGELORI	ALA MAN	: KA3	MAI	BERSKAL	4	
IJAZAH: SARJ	AM ANUDA	SAIMS	DENGAN	ICEP	JJIAH (KI	evenui pura	1121
SAYA LEE		HON G F BESAR)		_ SE	SI PENGAJIAI	N: 05/0	6
 Perpusta sahaja. 	ngan syarat-syara alah hakmilik Uni kaan Universiti M kaan dibenarkan r n tinggi.	t kegunaan : versiti Mala lalaysia Saba	seperti beriku ysia Sabah. ah dibenarkan	it:- n membu	at salinan untul	k tujuan pengaj	ian
	JLIT ERHAD	(Kepentingan AKTA RAH Mengandung	Malaysia SIA RAS	a seperti yang te MI 1972) nat TERHAD y	rjah keselamata ermaktub di da yang telah diten lidikan dijalank	lam tukan
T	IDAK TERHAD		olen organisa	SUGAUAII	Disahkan O		
TANDATANG				(TANI	DATANGAN P	PUSTAKAWA	N)
LANG	46, TAMAN	5		DR.	NOOMI S	ama Penyelia	-
arikh: 15/5/08				Tarikh:	15/5/08		
/orga dike @Tesi	ng yang tidak ber tesis ini SULIT a anisasi berkenaan laskan sebagai SU s dimaksudkan se elidikan atau dise	tau TERHA dengan mer JLIT dan TE bagai tesis b	yatakan seka RHAD. bagi Ijazah Do	li sebab oktor Fal	dan tempoh tes safah dan Sarja	is ini perlu ina secara	ana

DECLARATION

I hereby declare that this literary work was resulted from my own work except for statements and summaries which each of it had been stated its source.

12 May 2008

LEE CHEONG HONG

HS2005-2725

VERIFICATION

Name: Lee Cheong Hong

Title: Factors Affecting the Formation of Trihalomethanes During Water Chlorination: A Bench-Scaled Study

DR. NOUMIE SURUGAU

iii

PROF. MADYA DR. MARCUS JOPONY

DR. HOW SIEW ENG

Stan min 2

PROF. MADYA. DR SHARIFF A.K. OMANG

May, 2008

ACKNOWLEDGEMENT

First of all, I would like to take this advantage to thanks School of Science and Technology, University Malaysia Sabah for giving me chance and facilities to run this final year project. I also would like to express my sincere gratitude to my thesis supervisor Dr. Noumie Surugau for her valuable advice, guidance, and continuous encouragement at various stages throughout the completion of dissertation, also for her expert guidance and for her patience. Hence, her help is highly appreciated.

I also greatly in debt for Mr. Sani Gorudin (lab assistant) and Mr. Samudi (lab assistant) for their corporation of preparing the chemicals, glasswares and apparatuses and provide any helps when necessary. Their helps had simplified my lab work. I would like to extend my heartiest appreciation to Mr. Sim Hang Chiew (ex-director of Chemistry Department of Malaysia, Kuching branch) for the chromatogram of my samples analysis and Mr. Sarif Mohd. Ajni Bin Sarif Tawang (Pegawai Sains of Chemistry Department of Malaysia, Kota Kinabalu branch) for the permission and his help to process my samples to be analyses as soon as possible.

Finally, I would like to thank all the SST's staffs and my fellow course mates for helping me throughout my work and lastly a grateful thanks to my parents for giving me moral and financial supports.

ABSTRACT

This study aimed to evaluate the role of chlorine dose, temperature and contact time on the formation of THMs as a result of chlorination of swamp water. All samples were extracted using purge-and-trap (PAT) technique followed by determination of trihalomethanes by gas chromatography-electrolytic conductivity detectors (GC-ELCD). Pearson correlation was applied during data analysis. Concentration of trihalomethanes increased progressively as chlorine dose increased from 2 mg/L to 8 mg/L with strong relationship between them. The relationship between temperature and trihalomethanes was weak. The reaction rate of trihalomethanes formation increased as temperature increased from 4 °C to 35 °C but showed a decreased at 25 °C. Increase in contact time from 4 hours to 12 hours showed strong relationship with trihalomethanes except bromodichloromethane. This result indicated that presence of trihalomethanes in water was exclusively due to chlorination.

V

FAKTOR MENYEBABKAN PEMBENTUKKAN TRIHALOMETANA SEMASA PENGKLORINAN AIR: KAJIAN BERSKALA

ABSTRAK

Kajian ini bertujuan untuk menilai peranan dos klorin, suhu dan tempoh tindak balas dalam pembentukan trihalometana semasa hasil daripada pengklorinan air paya. Kesemua sampel diekstrak dengan menggunakan teknik purge-and-trap (PAT) diikuti dengan penentuan trihalometana dengan kromatografi gas dengan penunjuk electrolytic conductivity (GC-ELCD). Korelasi Pearson digunakan dalam analisis data. Peningkatan kepekatan trihalometana adalah berkadar langsung dengan peningkatan dos klorin dari 2 mg/L ke 8 mg/L dengan hubungan yang kuat antara mereka. Hubungan antara suhu dan trihalometana adalah lemah. Kadar tindak balas pembentukan trihalometana meningkat denagn peningkatan suhu dari 4 °C hingga 8 °C tetapi menunjuk penurunan pada subu 25 °C. Peningkatan tempoh tindak balas dari 4 jam ke 8 jam menunjukkan hubungan yang kuat dengan trihalometana kecuali bromodwiklorometana. Keputusan ini menunjukkan bahawa kehadiran trihalometana dalam air adalah berpunca daripada pengklorinan.

TABLE OF CONTENTS

	Page
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF PHOTOS	xiii
LIST OF APPENDIXES	xiv
LIST OF SYMBOLS	xvi
CHAPTER 1 INTRODUCTION	1
1.1 Research Background	1
1.2 Objective of Study	4
1.3 Scope of Study	5
CHAPTER 2 LITERATURE REVIEW	6
2.1 Disinfected By-Products (DBPs)	6
2.2 Trihalomethanes (THMs)	9
2.2.1 Factor influencing the rate of THMs' formation	10
2.2.2 Multiroute exposure of trihalomethanes (THMs)	13
2.3 Effect of Trihalomethanes on Animal Test and Toxicology	15

	2.3.1 Chloroform	15
	2.3.2 Bromodichloromethane	16
	2.3.3 Dibromochloromethane	18
	2.3.4 Bromoform	19
2.4	Effect of Trihalomethanes on Humans	19
2.5	Previous Researches on Formation of THMs in Malaysia	22
CHA	PTER 3 METHODOLOGY	24
3.1	List of Chemical, Apparatus and Instrument Used During Research	24
3.2	Apparatus Preparation	26
3.3	Water Samples	27
3.4	Measurement of in-situ parameter	27
	3.4.1 Conductivity and temperature	27
	3.4.2 pH	30
	3.4.3 Turbidity	30
3.5	Sample Stabilization	31
3.6	Standard Collection	31
3.7	Chlorination of Swamp Water	32
	3.7.1 Effect of Chlorine Dose on Formation of Trihalomethane	34
	3.7.2 Effect of Temperature on Formation of Trihalomethane	34
	3.7.3 Effect of Contact Time on Formation of Trihalomethane	34
3.8	Sample Preparation	35
3.9	Blank Sample Preparation	35
3.10	Preparation of Standard Stock Solution	35

viii

3.11	Calibration Standard	36
3.12	Sample Filtration and Standard Condition of the Sample	37
3.13	Determination of Chlorine Residual	37
3.14	Analysis with Purge-and-Trap Gas Chromatography-Electrolytic	39
	Conductivity Detectors (GC-ELCD)	
СНА	PTER 4 RESULT AND DISCUSSION	42
4.1	Measurement of in-situ Parameter	42
4.2	Concentration of Chlorine Residual in Chlorinated Samples	43
4.3	Effect of Chlorine Dose on Formation of Trihalomethanes	45
4.4	Effect of Temperature on Formation of Trihalomethanes	49
4.5	Effect of Contact Time on Formation of Trihalomethanes	54
СНА	PTER 5 CONCLUSION	58
REF	ERENCES	59
APPI	ENDIX A	66
APPI	ENDIX B	67
APPI	ENDIX C	69

ix

LIST OF TABLES

Page

Table 2.1	U.S. EPA DBPs regulation on drinking water	7
Table 2.2	European Union (EU) Standards on drinking water.	7
Table 2.3	World Health Organization (WHO) DBPs regulation on drinking	8
	water	
Table 2.4	Cancer group classification and quality target levels set by the EPA	22
	and WHO for Trihalomethanes	
Table 3.1	List of instrument used in this research	24
Table 3.2	List of apparatus used during the research	25
Table 3.3	List of chemical used during the research	26
Table 3.4	Chlorination experiment design of swamp water from Likas	33
Table 3.5	Standard condition of samples for chlorination	37
Table 3.6	Analytical conditions of the purge and trap	41
Table 3.7	Analytical conditions of the PAT-GC-ELCD	41
Table 4.1	Result of <i>in-situ</i> parameters of the swamp water sample studied	42
Table 4.2	Concentration of residual chlorine in the chlorinated swamp water	44
Table 4.3	Concentration of trihalomethanes in sample D1, S and D2	46
Table 4.4	Bivariate Pearson product-moment correlation for the	47
	trihalomethanes concentration as function of chlorine dose	
Table 4.5	Concentration of trihalomethanes of sample T1, S and T2	51
Table 4.6	Bivariate Pearson product-moment correlation for the	52
	trihalomethanes concentration as function of temperature	

Table 4.7	Concentration of trihalomethanes of sample S, C1 and C2	57
Table 4.8	Bivariate Pearson product-moment correlation for the	58
	trihalomethanes concentration as function of contact time	

LIST OF FIGURES

Figure 2.1	Structure of the main four species of THMs	9
Figure 2.2	THMs' parameters and their relation	11

Page

List of Photos

Photo 3.1	Map of Likas Bay and Kota Kinabalu city centre	28
Photo 3.2	Map of Likas Bay and University Malaysia Sabah	28
Photo 3.3	Map of sampling site at Likas Bay	29
Photo 3.4	Picture of sampling site at Likas Bay	29

Page

LIST OF APPENDIXES

Page

APPENDIX A

Table A-1	Blank titration of distilled water with 0.01 sodium thiosulphate	66
Table A-2	Titration of chlorinated swamp water with 0.01N sodium	66
	thiosulphate	

APPENDIX B

Calculation of chlorine residual concentration in swamp water sanples	67
---	----

APPENDIX C

Chromatogram of PAT-GC-ELCD of chlorinated	68
water sample (Sample S-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	69
water sample (Sample S-Replicate 2)	
Chromatogram of PAT-GC-ELCD of chlorinated	70
water sample (Sample D1-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	71
water sample (Sample D1-Replicate 2)	

Chromatogram of PAT-GC-ELCD of chlorinated	72
water sample (Sample D2-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	73
water sample (Sample D2-Replicate 2)	
Chromatogram of PAT-GC-ELCD of chlorinated	74
water sample (Sample T1-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	75
water sample (Sample T1-Replicate 2)	
Chromatogram of PAT-GC-ELCD of chlorinated	76
water sample (Sample T2-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	77
water sample (Sample T2-Replicate 2)	
Chromatogram of PAT-GC-ELCD of chlorinated	78
water sample (Sample C1-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	79
water sample (Sample C1-Replicate 2)	
Chromatogram of PAT-GC-ELCD of chlorinated	80
water sample (Sample C2-Replicate 1)	
Chromatogram of PAT-GC-ELCD of chlorinated	81
water sample (Sample C2-Replicate 2)	

LIST OF SYMBOLS

µg/L	Microgram per litre
Mg/L	Miligram per litre
kPa	kilopascal
°C	Degree Celsius
%	Percentage
mL	Millilitre
L	Litre
cm	Centimetre
km	Kilometre
mg	Milligram
h	hour
µS/cm	Microsiemens per centimetre
NTU	Nephelometric Turbidity Unit
+/-	Plus or minus
w/v	Weight over volume
mg/L	Miligram per litre
Ν	Normality
ID	Internal diameter
TFE	Teflon faced silicone septa
DBPs	Disinfection by-products
THMs	Trihalomethanes

CHCl ₃	Chloroform
CHCl ₂ Br	Bromodichloromethane
CHClBr ₂	Chlorodibromomethane
CHBr ₃	Bromoform
TTHMs	Total trihalomethanes
EPA	US Environmental Protection Agency
WHO	World Health Organization
TOC	Total organic carbon
UV	Ultra-violet
NOM	Natural organic matter
THM-Br	Brominated trihalomethanes
GC	Gas chromatography
HPLC	High performance liquid chromatography
CE	Capillary electrophoresis
LLE	Liquid-liquid extraction
HS	Headspace
PTI	Purge and trap injection
PAT	Purge-and-trap
LPME	Liquid phase micro extraction
GC-ELCD	Gas chromatography-electrolytic conductivity detectors
VCHCs	Volatile halogenated hydrocarbons
HAAs	Haloacetic acids
EU	European Union

THMFP	Trihalomethanes total potential
IARC	International Agency for Research on Cancer
NaOCl	Sodium Hypochlorite
NaOH	Sodium Hydroxide
H _x O	Water molecule
HOC1	Hypochlorous acid
H^+	Hydrogen ion
OCI	Hypochlorite ion
HOBr	Hypobromite
NaOBr	Sodium Hypobromite
IPCS	International Programme of Chemical Safety
T_c	Critical Temperature

CHAPTER 1

INTRODUCTION

1.1 Research Background

Chlorination is a widely used method of disinfection where pathogenic or micro organisms in drinking water are deactivated by application of chlorine in order to ensure the residual concentration in drinking water distribution systems is harmless. In another word, it protects the regrowth of pathogenic or micro organism in drinking water. Disinfection is the most important stage in the treatment of drinking water in water treatment plant. Pathogenic or micro organisms are responsible for water borne diseases such as typhoid fever, cholera and dysentery. Chlorine is used for decades in disinfection as disinfection agent due to its proven effectiveness and inexpensive. Indeed, chlorination is used for most municipal water supply system in Malaysia for disinfection (Md Pauzi Abdullah *et al.*, 2003).

Although chlorination is cheap and effectively deactivate pathogenic or micro organisms, but its cause formation of disinfection by-products (DBPs) as side product. Among DBPs formed, trihalomethanes (THMs) are toxic and carcinogec. Four main

trihalomethanes that responsible for the carcinogens risk are chloroform (CHCl₃), bromodichloromethane (CHCl₂Br), chlorodibromomethane (CHClBr₂) and bromoform (CHBr₃). Various researches are done on the THMs in drinking water by many scientists. Many countries have set the maximum contamination level for total trihalomethanes (TTHMs) in drinking water. US Environmental Protection Agency (EPA) has set 80 μ g/L as TTHMs concentration in drinking water. On the other hand, European Union Legislation has set 150 μ g/L until December 2008 and 100 μ g/L thereafter as TTHMs concentration (Nikolaou *et al.*, 2004).

During chlorination, chlorine reacted with organic matters that naturally presence in water and cause formation of THMs by addition and substitution reactions. Humic and fulvic acid are the organic matter, the main precursor that usually measured with nonspecific parameters like total organic carbon (TOC) or UV absorbance. Formation of THMs depend on few primary factors, that is raw water quality, type and concentration of natural organic matter (NOM), bromide ion concentration, chlorine form and dose, contact time, pH, alkalinity, temperature, and organic nitrogen concentration. Chlorinated THMs will continue to form as there is residual of chlorine in the water distribution system with the presence of organic matter until all the free chlorine is consumed. While for brominated THMs, its formation happened when presence of bromide due to oxidation by hypochlorous acid to yield hypobromous acid with residual hypochlorous acid. Its reacts with precursor organic compound which result in mixed chlorobromosubstitution products. THMs also increase with the increase of temperature and pH. Formation of THMs decrease with decrease of ammonia concentration. Chlorinated and

brominated speciation THMs are mainly influenced by organic matter and bromide concentration in drinking water. For example, brominated THMs (THM-Br) increase with the ratio of bromide and TOC. On the other hand, formations of chloroform increase with TOC but decrease with bromide, while formations of CHBr₃ show the opposite behavior. CHCl₂Br and CHClBr₂ show the similar behaviors but they increase very quickly with bromide and slowly with organic matter. (Solini and Collivignarelli, 2004; Zoccolillo *et al.*, 2005; Juan *et al.*, 2006)

The determination of THMs is generally performed by chromatographic methods. The most used method are gas chromatography (GC), followed by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). There are number of techniques have been reported for analyze THMs in water, such as direct injection, liquidliquid extraction (LLE), static headspace technique, dynamic headspace (HS) technique or purge and trap injection (PAT), solid phase micro extraction (SPME) technique and liquid phase micro extraction (LPME) technique (Nikolaou *et al.*, 2002).

All the technique has different recoveries, detection limit and effectiveness in determination of THMs in drinking water. For direct injection, although it is an attractive technique, but there is problem with column stability and critical temperatures for both column and injector. While PAT technique showed good result, but it is more time consuming. On the other hand, purge and PAT have relatively high detection limits from 0.1 to 0.04 μ g/L due to the low recoveries of analytes when cartridges are used as trap and this method is not specific for THMs determination. HS techniques is relatively less

sensitive compared LLE and headspace method only suitable to analyze sample with high concentration due to high detection limits from 0.05 to 0.2 μ g/L. HS technique also have low recoveries (Nikolaou *et al.*, 2002).

The technique used in this study is purge and trap for gas chromatographyelectrolytic conductivity detectors (GC-ELCD). GC-ELCD is an element-detective selection method for compounds containing halogen, nitrogen and sulphur. The high selectivity for halogen makes the detector suitable for analysis of halogen compounds in complex samples matrices such as environmental sample. PAT-GC-ELCD is a technique with lowest detection limit, ranging from 0.01 to 3 μ g/L and applicable concentration range of this method is also compound and instrument dependent and is approximately 0.02 to 200 μ g/L (Mu *et al.*, 1999, USEPA, 1995).

1.2 Objectives of Study

The objectives of this study were:

- a. to determine the extent of THMs presence in chlorinated swamp water
- to study the effect of chlorine dose, temperature and contact time on formation of trihalomethanes of chlorinated natural water by bench-scaled study

1.3 Scope of Study

Due to the diversity of this field, the scope of this study was to determine THMs only, and not the whole variety of DBPs. Out of the so many types of THMs, only four main trihalomethanes were studied, namely CHCl₃, CHCl₂Br, CHClBr₂ and CHBr₃. Compounds in these four main THMs are known as carcinogenic compounds in drinking water. Water samples are taken from swamp at Likas, Sabah as natural water. A benchscaled chlorination experiment was conducted using swamp water from Likas, Sabah in order to investigate the effect of different factors on the formation of THMs. These factors were contact time, chlorine dose and temperature.

REFERENCE

- Culp, Gordon, 1984. Trihalomethanes reduction in drinking water: technologies, costs, effectiveness, monitoring, compliance. Pollution Technology Review 114, Noyes Publication, USA. p 67-71.
- Department of Environment and Conservation of Newfoundland and Labrador Canada, 1999. Trihalomethane (THMs) Levels in Public Water Supplies of Newfoundland and Labrador. *Water Resources Management Division*, 2-1 – 2-12.
- Eaton, Andrew D., Clesceri, Lenore S., and Greenberg, Arnold E., 1995. Standard methods for the examination of water and wastewater . 19th edition, American Public Health Association, Washington DC. p 4-36 – 4-47, p 6-61 – 6-66, p 2-8 – 2-11, p 4-65 – 4-69, p 2-43 – 2-45.
- Fayad, Nabil M. and Shahid Iqbal, 1985. Analysis of drinking water for the detection of trihalomethanes. Environmental, Contamination and Toxicology 35, 576-582.
- Garcia-Villanova RJ, Garcia C., Gomez JA, Garcia MM, and Ardanny R. Formation, evolution and modelling of trihalomethanes in the drinking water of a town: I. At the municipal treatment utilities. *Journal of Water Research* **41**, 251-255.
- Golfinopoulos, Spyros K., Lekkas, Themistokles D., and Nikolaou, Anastasia D., 2000. Comparison of methods for determination of volatile organic compounds in drinking water. *Chemosphere* 45, 275-284.
- Google Earth, 2007. Map of Likas Bay and Kota Kinabalu city centre. http://www.google.com.
- Google Earth, 2007. Map of Likas Bay and University Malaysia Sabah. http://www.google.com.

Google Earth, 2007. Picture of sampling site at Likas. http://www.google.com.

- Gopal, Krishna, Tripathy, Sushree Swarupa, Bersillon, Jean Luc, Dubey, Shashi Prabha, 2006. Chlorination byproducts, their toxidynamiucx and removel from drinking water. *Journal of Hazardous Material* 140, 1-6.
- Harp, L. Daniel, 2002. Current technology of chlorine analysis for water and wastewater. *Technical information series* – Booklet No. 17, Hach Company, USA. 1-31.
- Hua, Guanghui and Reckhow David A., 2007. Comparison of disinfection byproducts formation from chlorine and alternative disinfectants. *Water Reseach* 41, 1667-1678.
- Huang Xin, Gao Naiyun and Deng Yang, 2007. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water. *Journal of Environmental Sciences* 20, 246-251.
- International Programme of Chemical Safety, (IPCS), 2000. Environmental Health Criteria 216: Disinfectants and Disinfectant By-Products. http://www.inchem.org/documents/ehc/ehc/ehc216.htm.
- Intenational Agency For Research On Cancer, (IARC) 1997. Chlorinated drinking-water; chlorination by-products; some other halogenated compounds; cobalt and cobalt compounds. *IARC Monographs for the Evaluation of the Carcinogenic Risk of Chemicals to Humans* 52, 179-244.
- Intenational Agency For Research On Cancer, (IARC), 1999. Some chemicals that cause tumours of kidney or urinary bladder in rodents and some other subtances. IARC Monographs for the Evaluation of the Carcinogenic Risk of Chemicals to Humans 73, 131-133.

- Juan, Pedro Manuel San, Carrillo, Jose David, Tena, and Maria Teresa, 2006. Fibre selection based on an overall analytical feature comparison for the solid-phase microextraction of trihalomethanes from drinking water. *Journal of Chromatography* A, 27-29.
- Kavcar, Pinar, Odabasi, Mustafa, Kitis, Mehmet, Inal, Fikret, Sofuoglu, Sait C., 2006. Occurance, oral exposure and risk assessment of volatile organic compounds in drinking water for Izmir. Water Reseach 40. 3219-3230.
- Keiko Ichihashi, Kiyoshi Teranishi and Akio Ichimura, 1998. Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite ion. *Water Research* 33, 477-483.
- Krauser, Stuart., McGuire, M., Jacengelo, J., Patania, N., Reagen, K. and Aieta, E., 1989. The occurance of disinfection by-products in US drinking water. *Journal of American Water Works Assiciation* 81, 41-53.
- Mohd. Pauzi Abdullah, Yew, C.H., and Mohamad Salleh bin Ramli, 2003. Formation, modeling and validation of trihalomethanes (THM) in Malaysian drinking water: a case study in the district of tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia. Water Research 37, 4637-4642.
- Muddassir Nazir, and Faisal I. Khan, 2005. Human health risk modelling for various exposure routes of trihalomethanes (THMs) in potable water supply. *Environmental Modelling & Software* **21**, 1416-1421.
- Nikolaou, Anatasia D., Golfinopoulos, Spyros K., Lekkas, and Themistokles D., 2002. Formation of organic by-products during chlorination of natural waters. *Journal of Evironmental Monitoring* 4, 910-916

- Nikolaou, Anastasia D., Golfinopoulos, S., Rizzo, L., Lofrano, G., Lekkas, Themistokles D., and Belgiorno, V., 2005. Optimization of analytical methods for determination of DBPs: Application to drinking waters from Greece and Italy. *Desalination* 176, 25-36.
- Nikolaou, Anastasia D., Golfinopoulos, Spyros K., Lekkas, Themistokles D., and Arhonditsis, George B., 2004. Factors affecting the formation of organic byproducts during water chlorination: a bench-scale study. *Water, Air and Soil pollution* 159, 357-371.
- Nikolaou, Anastasia D., Lekkas, Themistokles D., Golfinopoulos, Spyros K., Kostopoulou, and Maria N., 2002. Application of different analytical methods for determination of volatile chlorination by-products in dirnking water. *Talanta* 56, 717-726.
- Nikolaou, Anastasia D., Lekkas, Themistokles D., and Kostopoulou, M. N., 1999. Organic by-products of drinking water chlorination. *Global Nest* **3**, 143-156.
- Potter, C.L., Chang, L.W., DeAnhelo, A.B., and Daniel, F.B., 1996. Effects of four trihalomethanes on DNA strand breaks, renal hyaline droplet formation and serum testosterone in male F-344 rats. *Cancer Letters* 106, 235-242.
- Richardson, Susan D., 2003. Disinfection by-products and other emerging contaminants in drinking water. *Trends in Analytical Chemistry* **22**, 666-675.
- Rodrigues, Pedro M.S.M., Esteves da Silva, Joaquim C.G., Antunes, Maria Cristina G., 2007. Factorial analysis off the trihalomethanes formation in water disinfection using chlorine. *Analytica Chimica Acta* 595, 266-274.
- Serano, A., Gallego, M., 2007. Rapid determination of total trihalomethanes index in drinking water. *Journal of Chromatography* A, 1-4.

- Singer, Philip C., 1994. Control of disinfection by-products in drinking water. Journal of Environmental Engineering 120, 727-744.
- Soh, Shiau-Chian and Md. Pauzi Abdullah, 2005. Applicability of direct extraction of solid phase micro-extraction to the determination of 54 volatile organic compound in drinking water. *Malaysian Journal of Chemistry* Volume 7, 019-025.
- Sorlini, Sabrina, and Collivignarelli, Carlo, 2004. Trihalomethanes formation during chemical oxidation with chlorine dioxide and ozone of ten Italian natural waters. *Desalination* 176, 103-111.
- Tardiff, Robert G., Carson, M. Leigh, Ginevan, Micheal E., 2006. Updated weight of eveidance of an association between adverse reproductive and development effects and exposure to disinfection by-products. *Regularoty Toxicology and Pharmacology* 45, 185-205.
- Tee O. S., Paventi M. and Bennett, J. M., 1989. Kinetics and mechanism of the bromination of phenols and phenoxide ions in aqueous solution. Diffusioncontrolled rates. *Journal of America Chemistry Society* 111, 2233-2240
- The Clorox Company, 2005. Material safety data sheet: Clorox regular-bleach. http://www.thecloroxcompany.com/products/msds/bleach/cloroxregularbleach050 5_.pdf.
- United Nations Environment Programme/World Health Organization, (UNEP/WHO), 1996. Water Quality Monitoring – A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. 1-212.

- United State Environmental Protection Agency, (EPA), 1979. EPA method 501.2: Analysis of trihalomethanes in drinking water by liquid/liquid extraction. *EPA* **500-Series**, 1-12.
- United State Environmental Protection Agency, (EPA), 1979. EPA method 501.3: Measurement of trihalomethanes in drinking water with gas chromatography/mass spectrometry and selected ion monitoring. *EPA* 500-Series, 1-19.
- United State Environmental Protection Agency, (EPA), 1995. EPA method 502.2: Volatile organic compounds in water by purge and trap capillary column gas chromatography with photonization and electrolytic conductivity detectors in series. *EPA* **500-series**, 1-35
- United State Environmental Protection Agency, (EPA), 1997. Criteria and procedures quality assurance. *Manual for the Certification of Laboratories Analyzing Drinking Water* 5th Edition, 41-80.
- United State Environmental Protection Agency, (EPA), 1998. National Primary Drinking Water Regulations: Disinfectants and Disinfection Byproducts. http://www.epa.gov/OGWDW/mdbp/dbpfr.html.
- Uyak, Vedat and Ismail, Toroz, 2007. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply. *Journal of Hazardous Materials* 149, 445-451.
- Uyak, Vedat, Ismail, Toroz and S. Meric, 2004. Monitoring and modelling of trihalomethanes (THMs) for a water treatment plant in Istanbul. *Desalination* 176, 91-101.

- Villanueva, Cristina M., Gaginiere, Bertrand, Monfort, Christine, Nieuwenhuijsen, Cordier, Sylvaine, 2006. Source of variability in levels and exposure to trihalomethanes. *Environmental Research* 103, 211-220.
- Wang, Zhendi, Li, K., Fingas, M., Sigouin, L., and Menard, L., 2002. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. *Journal of Chromatography* 971, 173-184.
- World Health Organization, (WHO), 2005. Trihalomethanes in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality. Guidelines for Drinking-water Quality 3rd Edition, 1-67.
- Williams, D., LeBel, G. and Benoit, F., 1997. Disinfection by-products in Canadian drinking water. *Chemosphere* 34, 299-316.
- Xin Yang, Chii Shang, Huang, and Ju-Chang, 2005. DBP formation in breakpoint chlorination of wastewater. *Water Research* **39**, 4755-4767.
- Yang, Chun-Yuh, Xiao, Zhi-Pimg, Ho, Shu-Chen, Wu, Trong Neng, Tsai, Shang-Shyue. 2007. Association between trihalomethanes concentrations in drinking water and adcerve pregnancy outcome in Taiwan. *Environmental Research* 104, 390-395.
- Zoccolillo, Lelio, Amendola, Luca, Cafaro, Claudia, and Insogna, Susanna, 2005. Improved analysis of volatile halogenated hydrocarbons in water by purge-andtrap with gas chromatography and mass spectrometric detection. *Journal of Chromatography* 1077, 181-184.

