ANALYSIS OF SLOPE STABILITY BY USING OASYS SLOPE VERSION 18.1 SOFTWARE

CHEW GUAN KHIM

PERPUSTAKAAN UMIVERSITI MALAYSIA SABAH

THESIS IS SUBMITTED IN PARTIAL FULFILMENT OF THIS REQUIREMENTS FOR DEGREE OF BACHELOR OF CIVIL ENGINEERING WITH HONOUR

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITY MALAYSIA SABAH

2006/2007

i

PUMS99:1

UNIVERSITI MALAYSIA SABAH

				NG PENGES							
UDUL: A	VALYSI.	5 00	F A	PE STAB	LITY	BY US	SING	OASYS	STOLE	VERSIO	N
)	8.1	SEFT W	ARE								
AZAH: S	AN JANA	1	HUDA	DENGAN	KEPU	UNICH	(REJURNI	ERAAN	AWAM)	>
AYA C	HEW	GUAN	ktt /	M BESAR)		_	SES	I PENGA	JIAN:	2003/200	4
nengaku mem Malaysia Sabal							i disir	npan di Po	erpustaka	aan Univers	iti
2. Perp sahaj	ustakaan ja.	Unive	ersiti M	versiti Malay alaysia Saba	h dibena	rkan me					
peng	ustakaan ajian tin tandakar	ggi.	arkan n	nembuat sali	nan tesis	ini seba	igai b	ahan pertu	ıkaran an	tara institu	tsi
	SULI				Kepentin	igan Ma	laysia		ang terma	keselamata aktub di dal	
] TERH									telah diten an dijalan	
-		KIE	RHAD					Disahk	an Oleh		
de	Site	-						2	1		
(TANDAT	ANGAN	PENU	JLIS)			ī	TAN	DATANG	AN PUS	TAKAWA	N)
lamat Tetap:	5-12	PANE	FSA B	INGA TANJU	vG.			/			
12300	BUTTER	WORTH	1	_		-	Ħ	MR. Jo			
PULAU	rinning.		_	-					Nama	Penyelia	
arikh: 33/	4/07					T	arikh:	23/4/	7		
	*Jika tes /organi dikelas @Tesis c	is ini S sasi be kan sel limaks dikan	SULIT rkenaa bagai S udkan atau di	rkenaan. atau TERHA n dengan me ULIT dan T sebagai tesis sertai bagi pe	nyatakar ERHAD bagi Ijaz	a sekali s zah Dokt	sebab tor Fa	dan temp Isafah dar	oh tesis i 1 Sarjana	ni perlu secara	rjana

DECLARATION

I declare that this writing is the role of mine except for the quotation and summary which I have stated the source of each one of them.

16 APRIL 2007

alpeti -

(CHEW GUAN KHIM) HK 2003 - 2154

CERTIFIED BY

(MR. JODIN MAKINDA)

Site Supervisor

(PROF. DR. N.S.V. KAMESWARA RAO)

Examiner

(MDM. LILIAN GUNGAT)

Chairman

ii

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my supervisor, Mr. Jodin for his valuable advice and great encouragement as well as for his excellent guidance and assistance for this thesis. I am also indebted for the amount of time and effort he has spent reading and correcting my thesis.

A special thanks to my friends, who have given tremendous support throughout my engineering degrees. Lastly, I am very thankful to my family members for their support and encouragement.

ABSTRACT

A fill slope with two different angles and fill slope by extend the toe of the fill slope were proposed to stabilize the permanent fill slope at KM 47.9 of Tamparuli – Ranau Highway, Sabah. In this study, software Oasys Slope version 18.1 was used to analysis the possibility failure of the existing fill slope. Bishop Method with Variably Inclined Interslice Forces was used for the analysis. Two method of proposed fill slope were analyzed. The result showed that the factor of safety for the existing slopes to factor of safety 1. The existing slopes tend to fail. For the proposed slope, the factor of safety increased after application of the proposed fill slope.

iv

ABSTRAK

Cerun timbus dengan dua sudut yang berlainan dan cerun timbus dengan memanjangkan kaki cerun telah dicadangkan untuk menstabilkan cerus timbus tetap di KM 47.9 Tamparuli-Ranau Highway, Sabah. Dalam kajian ini, perisian Oasys Slope versi 18.1 telah digunakan untuk menganalisakan kemungkinan gagal cerun yang sedia ada. Cara Bishop dengan Variably Inclined Interslice Forces telah digunakan untuk analisa. Dua cara cerun timbus yang dicadangkan telah dianakiskan. Keputusan telah menunjukkan bahawa factor selamat untuk cerun yang sedia ada telah mendekati factor selamat 1. Cerun yang sedia ada boleh gagal. Untuk cerun yang dicadangkan, factor selamat akan meningkat selepas cerun timbus yang dicadangkan telah digunakan.

CONTENTS

	Page
TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENTS	111
ABSTRACT	iv
ABSTRAK	v
CONTENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	viii
LIST OF CHARTS	xv
CHAPTER 1 - INTRODUCTION	1
1.0 Overview	1
1.1 Problem Statement	2
1.2 Objective of Study	3
1.3 Scope of Study	3
1.4 Significance of the Study	3
1.5 Time Plan	4
CHAPTER 2 - LITERATURE REVIEW	5
2.0 Definition of Hill Site in Malaysia	5
2.1 Geology in Relation to Landslides of Sabah	7
2.2 Policy on Hill Slopes Development of Sabah (State Environmer	ntal

Conservation Department, Sabah)	9
2.2.1 Slope Erosion	11
2.2.2 Slope Stability	11
2.2.3 Landscape Impacts	11
2.3 Factor of Safety	12
2.4 Bishop Method	13
2.4.1 Bishop's Simplified Method - Horizontal Interslice Forces	13
2.4.2 Bishop's Method - Parallel Inclined Interslice Forces	14
2.4.3 Bishop's Method - Variably Inclined Interslice Forces	14
2.5 Recommendations of Gue & Partners Consultant Sdn Bhd,	
Kuala Lumpur, Malaysia	17
2.5.1 Factor of Safety	17
2.5.2 Design of Cut Slopes	21
2.5.3 Design of Fill Slopes	21
2.5.4 Surface Protection and Drainage	22
2.5.5 Construction Control	23
2.5.6 Maintenances of Slopes	25
2.6 Planning, Analysis and Design for Hill Site Development	27
2.6.1 Desk Study	27
2.6.2 Site Reconnaissance	27
2.6.3 Subsurface Investigation	28
2.6.4 Planning of the Layout	29
2.6.5 Analysis and Design of Slopes	29

CHAPTER 3 – METHODOLOGY

3.0 Flow Chart of Methodology

31

vii

3.1 Introduction	32
3.2 Discussion with Supervisor	32
3.3 Review of Literature	32
3.4 Field Observation and Field Investigation	33
3.5 Collection the Data	33
3.6 Interpretation Data from Geotechnical Report	33
3.7 Analysis of Result	33
3.8 Discussion and Conclusion	34
CHAPTER 4 - SOFTWARE REVIEW	35
4.1 Oasys Slope 18.1	35
4.2 SLOPE/W	36
4.3 PLAXIS	38
4.4 ReActiv	39
4.5 ReWaRD	40
4.6 WALLAP	41
CHAPTER 5 - RESULTS AND ANALYSIS	43
5.1 Soil Properties	43
5.2 Borehole Description	44
5.3 Result of Analysis of Slope 18.1	49
5.3.1 Section C-C (Worst Case)	49
5.3.2 Section C-C after fill with two different angle of fill slope	50
(Worst Case)	
5.3.3 Section D-D (Worst Case)	50
5.3.4 Section D-D after fill with two different angle of fill slope	51

viii

(Worst Case)

CHAP

1.1

5.3.5 Section E-E (Worst Case)	51
5.3.6 Section E-E after fill by extent the toe of slope (Worst Case)	52
5.3.7 Section E-E after fill with two different angle of fill slope	52
(Worst Case)	
5.3.8 Section F-F (Worst Case)	53
5.3.9 Section F-F after fill by extent the toe of slope (Worst Case)	53
5.3.10 Section E-E after fill with two different angles of fill slope	54
(Worst Case)	
5.3.11 Section G-G (Worst Case)	54
5.3.12 Section F-F after fill by extent the toe of slope (Worst Case)	55
5.3.13 Section E-E after fill with two different angles of fill slope	55
(Worst Case)	
Summarize Table of Factor of Safety	56
6 - DISCUSSION	57
Existing Slope	58
Slope Remedial Works	63
6.2.1 Scheme 1 – Reconstruction of Fill Slope by Extent the Toe	63
of the Fill Slope	
6.2.2 Scheme 2 – Reconstruction of Fill Slope with Two Different	69
Angles of Fill Slope	
Excavation	74
New Fill Material	74
Surface Drains and Erosion Protection	74
	5.3.6 Section E-E after fill by extent the toe of slope (Worst Case) 5.3.7 Section E-E after fill with two different angle of fill slope (Worst Case) 5.3.8 Section F-F (Worst Case) 5.3.9 Section F-F after fill by extent the toe of slope (Worst Case) 5.3.10 Section E-E after fill with two different angles of fill slope (Worst Case) 5.3.11 Section G-G (Worst Case) 5.3.12 Section F-F after fill by extent the toe of slope (Worst Case) 5.3.13 Section F-F after fill with two different angles of fill slope (Worst Case) 5.3.13 Section E-E after fill with two different angles of fill slope (Worst Case) 5.3.15 Section F-F after fill with two different angles of fill slope (Worst Case) 5.3.16 Section F-F after fill Section of Safety 5.3.17 Section F-F after fill Section of Safety 5.3.18 Section F-F after fill Slope by Extent the Toe of the Fill Slope 5.2.1 Scheme 1 – Reconstruction of Fill Slope by Extent the Toe of the Fill Slope 5.2.2 Scheme 2 – Reconstruction of Fill Slope with Two Different Angles of Fill Slope Excavation

ix

CHAPTER 7 - SUMMARY, CONCLUSION AND

RECOMMENDATIONS	76
7.1 Summary	76
7.2 Conclusion	76
7.3 Recommendation	77

REFERENCES

78

APPENDIX A: LOCATIOAN OF BOREHOLES AND SECTION LINES

FOR SUBSOIL PROFILE

APPENDIX B: CROSS SECTIONS ALONG SECTION A-A,

SECTION B-B and SECTION F-F

APPENDIX C: BOREHOLE LOG OF BOREHOLE 1 TO 11

х

LIST OF FIGURES

Figure 4.1 Interface of Oasys Slope 18.1	36	
Figure 4.2 Interface of SLOPE/W	37	
Figure 4.3 Interface of Plaxis	38	
Figure 4.4 Geometry model of building pit	39	
Figure 4.5 Interface of ReActiv.	40	
Figure 4.5 Interface of ReWaRD.	41	
Figure 4.6 Interface of WALLAP.	42	
Figure 6.1 Section C-C with factor of safety = 1.606	58	
Figure 6.2 Section D-D of existing slope with factor of safety = 1.597	59	
Figure 6.3 Section E-E of existing slope with factor of safety = 1.181	60	
Figure 6.4 Section F-F of existing slope with factor of safety = 1.173	61	
Figure 6.5 Section G-G of existing slope with factor of safety = 1.190	62	
Figure 6.6 Section C-C after fill without extend with factor of safety = 1.606	64	
Figure 6.7 Section D-D after fill without extend with factor of safety = 1.507	65	
Figure 6.8 Section E-E after fill by extended 25m toe of the slope with factor	66	
of safety = 1.467		
Figure 6.9 Section F-F after fill by extended 30m toe of the slope with factor	67	
of safety = 1.557		
Figure 6.10 Section G-G after fill by extended 13m the toe of slope with factor	68	
of safety = 1.671		
Figure 6.11 Section C-C after fill with two different angles of fill slope with	69	
factor of safety = 1.947		
Figure 6.12 Section D-D after fill with two different angles of fill slope with	70	

factor of safety = 1.722

xi

Figure 6.13 Section E-E after fill with two different angle of slope with	71
factor of safety = 1.438	
Figure 6.14 Section F-F after fill with two different angle of slope with	72
factor of safety = 2.117	
Figure 6.15 Section G-G after fill with two different angle of slope with	73
factor of safety = 1.669	

xii

LIST OF TABLES

Table 2.1 Classification of risk of landslide on hill site development.	5
(after IEM, 2000)	
Table 2.2 Major landslides in Sabah (EIA Guideline for Construction	8
on Hill Slope of Sabah).	
Table 2.3 Element of statical equilibrium satisfied by various Limit	15
Equilibrium Methods (Source: Fredlund, 1984)	
Table 2.4 Typical examples of slope failures in each risk-to-life	18
category (modified from GCO 1991).	
Table 2.5 Typical examples of slope failures in each economic risk category (modified from GCO 1991).	18
Table 2.6 Recommended factor of safety for new slopes.	19
Table 2.7 Recommended factor of safety for existing slopes.	20
Table 5.1 Soil properties of existing slope of Layer 1, Layer 2 and Layer 3	43
Table 5.2 Soil properties of slope after fill Layer 1, Layer 2 and Layer 3	43
Table 5.3 Type of soil, depth of sample and SPT-N value of Borehole BH 1	44
Table 5.4 Type of soil, depth of sample and SPT-N value of Borehole BH 2	45
Table 5.5 Type of soil, depth of sample and SPT-N value of Borehole BH 3	45
Table 5.6 Type of soil, depth of sample and SPT-N value of Borehole BH 4	46
Table 5.7 Type of soil, depth of sample and SPT-N value of Borehole BH 5	46
Table 5.8 Type of soil, depth of sample and SPT-N value of Borehole BH 6	47
Table 5.9 Type of soil, depth of sample and SPT-N value of Borehole BH 7	47
Table 5.10 Type of soil, depth of sample and SPT-N value of Borehole BH 8	48
Table 5.11 Type of soil, depth of sample and SPT-N value of Borehole BH 9	48
Table 5.12 Type of soil, depth of sample and SPT-N value of Borehole BH 10	49

Table 5.13 Minimum of factor of safety of existing, after fill by extent the toe and after fill with two different angles of fill slope of Section C-C, Section D-D, Section E-E, Section F-F and Section G-G

xiv

Chart 3.1 Flow Chart of Methodology

31

XV

CHAPTER 1

INTRODUCTION

1.0 Overview

In Malaysia, there has been a tremendous increase in construction of residential buildings on hill-sites over the last 15 years especially due to depleting flat land and other influencing factors like beautiful scenery, fresh air, exclusiveness, etc. Often hill site development is related to landslides, and safety of buildings on hill-sites is often a topic of discussion among engineers and the public. The truth is hill-site development can be safe with proper planning, design, construction and maintenance.

Safety of buildings and slopes on hill-sites is often a topic of discussion among engineers and the public. The discussions intensify each time a landslide is highlighted by media and this usually happens during the monsoon seasons. The collapse of Block 1 of Highland Towers in 1993, landslides at Bukit Antarabangsa in 1999, and landslide at Taman Hillview in November 2002 have worried the public particularly those who are staying on a hill site or planning to purchase a unit on one.

Hills can have considerable development potential because of the views and attractive setting they provide. Historically, development on hills had been conceived on short term benefits with the rights of the individual prevailing. However, there are rising community expectations concerning the maintenance of visual values, natural habitat and biodiversity around urban and growth centres. Hill slopes are prone to

environmental hazards such as soil erosion and landslide as is evident from past incidences, resulting in loss of lives and property.

Development in these areas can compound such hazards and render them highly visible and costly to deal with. To ensure a safety for public from slope failure hazard, many kind of the slope stability techniques have been developed such as cut slope, fill slope, gabion wall, gravity retaining wall, crib wall, soil nailing, anchored sheet piles wall, anchored bored piles wall and so on.

Slope failure from time to time without prior indication and sometimes, due to interface of man. On of the factors that lead to the landslide is the weakness in managing the rock slope through effective stabilization method, maintenance and monitoring. Suitable stabilization method is required for the unstable slope that has low factor of safety and the process of selecting and deciding the appropriate methods are at critical stage.

Sometimes stable slope also may also fail due to the natural process such as weathering. Therefore, the understanding of the natural of slope, mode of slope failure, stabilization technique as well as maintenance is very important aspect when designing a slope.

1.1 Problem Statement

A comprehensive understanding of slope behavior and its failure mechanism is essential in designing and installation of appropriate stabilization system. The selection of proper stabilization method for slope stability depends on the failure

mode. The economic aspect should also be considered to avoid over design and consequently burden the client.

1.2 Objective of Study

The objectives of this study are identification and mapping of landslide prone areas in Kota Kinabalu.

1.3 Scope of Study

The study will be carried out at Tamparuli-Ranau Highway (KM 47.9) of Sabah.

- Studying the possibility of failure of the selective slope by using geotechnical software Oasys SLOPE version 18.0
- b. Suggesting the proper slope remedial works to improve the selective practices.

1.4 Significance of the Study

The significance of the study is the presentation of case study of different kind of slope stability techniques used in Sabah. The landslide is a natural hazard that has been threatening man for centuries. With the development of the technology, the impact of the hazard can be minimized through effective stabilization method. However, different mode of failure needs different technique of stabilization. Sometimes a slope failure is treated with combination of several support methods. How to select an appropriate and effective treatment for stabilizing a slope failure, which perform various mode of failure become questionable. There, knowledge on

the cause of failure and the relevant treatment are important in ensuring slope stability and subsequently maintenance.

CHAPTER 2

LITERATURE REVIEW

2.0 Definition of Hill Site in Malaysia

There is no legal definition of hill site development. Some agencies have proposed various classification systems to suit their own usage. The most common ones are based on altitude or slope gradient of the original topography before development. According to the Ministry of Housing and Local Governments of Malaysia (KPKT 1997), hill-sites will be classified as high risk if the lands have natural or original gradient of the slopes of 25 degrees and steeper.

In the Economic Planning Unit (EPU) 2002 report prepared by WWF, it was stated that a consistent classification of highlands should be adopted throughout the country and classification of risk of landslide on hill site development shown as below Table 2.1. Hence it gives the proposed definition based on altitude as follows:

- 0m 150m = Low Land
- 150m 300m = Hill Land
- · 300m 1000m = Highland
- Above 1000m = Mountain

Table 2.1 Classification of risk of landslide on hill site development. (after IEM, 2000)

Class				Descri	ptic	n					
(Low risk)	For	slopes	either	natural	or	man	made,	in	the	site	or

	adjacent to the site not belonging to Class 2 or Class 3.
(Medium risk)	For slopes either natural or man made, in the site or adjacent to the site where : • $6m \le H_T \le 15m$ and $a_G \ge 27^\circ$ or • $6m \le H_T \le 15m$ and $a_L \ge 30^\circ$ with $H_L \ge 3m$ or • $H_T \le 6m$ and $a_L \ge 34^\circ$ with $H_L \ge 3m$ or • $H_T \ge 15m$ and $19^\circ \le a_G \le 27^\circ$ or $27^\circ \le a_L \le 30^\circ$ with $HL \ge 3m$
(Higher risk)	Excluding bungalow (detached unit) not higher than 2- storey. For slopes either natural or man made, in the site of adjacent to the site where : $H_T \ge 15m$ and $a_G \ge 27^\circ$ or $H_T \ge 15m$ and $a_L \ge 30^\circ$ with $H_L \ge 3m$

H = Total height of slopes

- = Total height of natural slopes & man made slopes at site and immediately adjacent to the site which has potential influence on the site. It is the difference between the Lowest Level and the Highest Level at the site including adjacent site.
- H_L = Height of Localised Slope which Angle of Slope, a_L is measured.
- a_{G} = Global Angle of Slopes (Slopes contributing to H_{T}).
- a_L = Localise Angle of Slopes either single and multiple height intervals.

2.1 Geology in Relation to Landslides of Sabah

The geology of Sabah is dominated by sedimentary formations. About 70 per cent of this underlying geology is made of sedimentary rocks with about 10 per cent of rock types being Terrace and Recent deposits. The remainder of the geology is intrusive and extrusive igneous and metamorphic rocks.

The sedimentary formations comprise of a variety of rocks including interbedded sandstone and mudstone, shale, siltstone, limestone, calcareous sandstone, chert, tuffite and slump breccia. They are in varying degrees of consolidation. The sedimentary rocks which form the mountain and hill ranges along the west coast of Sabah belong to the Crocker and Trusmadi Formations; the rocks are strongly folded, faulted and fractured. The sedimentary rocks composing the east coast of Sabah are poorly consolidated, gently folded and tilted. Some of the formations consist predominantly of mudstone.

Terrace deposits are found in the Pinosuk Plateau, the Keningau-Sook Plain and along thecoastal areas. These consist of gravel, sand, silt and mud. The Pinosuk deposits are of glacial origin, poorly sorted and consolidated and consist of blocks as much as a few metres across.

Intrusive igneous rocks form mountains and hills in the Kinabalu and Segama areas, including the Mount Kinabalu. Volcanic rocks are mainly found in the Semporna Peninsula where they form mountainous country along the spine of the Peninsula; associated with these volcanic rocks are some intrusive rocks.

Weathering of the sedimentary formations is frequently severe, often reaching a depth of 30m. A completely weathered zone of 1 to 10m thick has developed in most formations. The erodibility of soils developed from the weathering of these sedimentary formations depends on soil texture, aggregate stability, shear strength, infiltration capacity and organic and chemical content. Soils with high silt content are highly erodible.

Instability and landslides are recurrent problems associated with hillslope development affecting excavation for building sites and road cuts, particularly on the hilly terrain underlain by sedimentary rocks along the west coast, Kundasang and Sandakan areas. Landslides are also common in steep terrain underlain by igneous intrusive rocks, particularly the ultrabasic rocks, in the Lahad Datu and Telupid areas. The landslides may occur both in bedrock and in overburden. Slides may also occur in fill material. A tabulated major landslides in Sabah provided by EIA for as a guideline for the construction on hill in Sabah shown as below in Table 2.2.

Bedrock slides are most common where planes of structural weakness such as bedding or major joint planes dip towards the cut. Overburden slides occur mainly on semi-hemispherical slip surface.

Table 2.2 Major landslides in Sabah (EIA Guideline for Construction on Hill Slope of Sabah)

Date	Locality	Loss or Life Property / Injury		Remarks
8 Feb 1999	Kg. Gelam,	17 dead, 2	4 houses	-
	2km from	injured	destroyed	

REFERENCES

Das, B.M. 1994. *Principles of Geotechnics Engineering*. Third Edition. Boston : PWS Publishing Company.

Terzaghi, K., Peck R.B. and Mesri, G. 1996. *Soil Mechanics in Engineering Practice*. Third Edition. New York : John Wiley & Sons.

Bowles, J.E. 1996. Foundation Analysis and Design. Toronto : McGraw Hill.

Cheng, L. & Evett J.B. 1998. *Soil and Foundation*. Fourth Edition. New Jersey: Prenctice Hall.

C.R.I. Clayton, J. Militisky & R.I. Woods, *Earth Pressure and Earth-Retaining Structures 2nd Edition*, Great Britain: Blackie Academic & Professinal.

C.R.I. Clayton, *Retaining Structure (Institution of Civil Engineers)*. London: Thomas Telfords.

S.S. Liew, Y.C. Tan & C.S. Chen. *Design, Installation and Performance of Jack-in-pipe Anchorage System for Temporary Retaining Structures.* Gue & Partner Sdn. Bhd. Malaysia.

Bishop A W (1955). *The use of the Slip Circle in the Stability Analysis of Earth Slopes*. Géotechnique Vol.5 No.1 pp 7-17.

Toyotoshi Yamanouchi, Norihiko Miura & Hidetoshi Ochiai. 1988. *Theory and Practice of Earth Reinforcement*. Netherlands: A.A. Balkema, Rotterdam.

BS 8002: 1994 Code of Practice for Earth Retaining Structures.

State Environment Conservation Department of Sabah. Policy on Hill slopes Development.

Richard J. Finno, Youssef Hashash, Carlton L. Ho and Bryan P. Sweeney. *Design and Construction of Earth Retaining Systems* (*Geotechnical Special Publication Number 83*). USA.

Ir. Dr. Gue See Sew & Tan Yean Chin. *Landslide: Case Histories Lessons Learned and Mitigation Measures*. Gue & Partner Sdn. Bhd. Malaysia.

State Environment Conversation Department of Sabah. 2001. EIA Guideline for Construction on Hillslope.

Wayne C. Teng. 1967. *Foundation Design*. Taiwan. Republic of China: Prentice Hall, Inc.

Gue, S.S. & Tan Y.C.. *Current Status and Future Development of Geotechnical Engineering Practice in Malaysia.* Gue & Partner Sdn. Bhd. Malaysia.

http://www.oasys.com

http://www.plaxis.nl

http://www.geocentrix.co.uk

http://www.geo-slope.com

http://www.xstabl.com

http://www.gtscad.com

http://www.geosolve.co.uk

