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ABSTRACT 

This dissertation was intended to offer an explanation of the Platonic Solids, 

Archimedean Solids and Kepler Poinsot Solids,at once simple and practical but not 

too speculative. There are some characteristic and properties have been observed and 

discussed. Every polyhedron follows the Euler's Formula and has its dual polyhedron. 

However, there is an exception of Euler's Formula for Kepler Poinsot Solids. All the 

Platonic Solids, Archimedean Solids and Kepler Poinsot solids can be described in an 

easier form like schlafli symbol and vertices configuration. The tessellation of 

polyhedron shows its arrangement of polygonal faces. Archimedean can be formed by 

truncation and snubbing process of Platonic Solids. On the other hand, Kepler Poinsot 

can be constructed by stellations of Platonic Solids. Some regular polyhedra share the 

common vertex arrangement or same edge arrangement. 
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ABSTRAK 

Kajian ini menyelidik tentang Pepejal Platonik, Pepejal Archimedean, dan Pepejal 

Kepler Poinsot. Ciri-ciri am telah dikaji dalarn kajian ini. Setiap polihedron rnematuhi 

hukum Euler dan rnernpunyai polyhedron dual. Narnun begitu, terdapat pengecualian 

untuk kes Pepejal Kepler Poinsot dalarn hukurn Euler. Sernua polihedron seragam dan 

serniseragarn dibentang dalarn bentuk yang lebih rnudah iaitu sirnbol schlafli dan 

configurasi puncak. Tessellation bagi polyhedron rnenggarnbarkan susunan untuk 

suatu polyhedron. Pepejal Archirnedean boleh dihasilkan dengan kaedah truncation 

dan snubbing. Di sarnping itu, Pepejal Kepler Poinsot boleh dibentuk melalui 

stellation bagi Pepejal Platonik. Beberapa polyhedron seragarn rnenikmati susunan 

puncak yang sarna atau susunan tepi yang sarna. 
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CHAPTER 1 

INTRODUCTION 

1.1 What Is Polyhedron? 

A polyhedron is a closed, three-dimensional version of polygon. It is composed of 

polygons connected at their edge in order to enclose space. In another word, it is a 

geometric object with flat surfaces and straight edges. The plural of polyhedron is 

polyhedra or polyhedrons (Alexander, 2003). 

The word polyhedron is derived from Greek in which poly- means "many" and 

-edron means "base", "seat" or "face". A polyhedron consists of vertex (vertices in 

plural), edges and faces as shown in Figure 1.1 below. 

ertex 

Edge 

Figure 1.1 Basic terms of polyhedron 
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A face of the polyhedron is each of its polygonal sides whereas an edge is a 

line segment where two faces meet, it is formed by the sides of two faces. A point 

called vertex is formed when few edges and faces are meet. This modified definition is 

given by Cromwell (1997) in his book "Polyhedra". 

According to Henderson & Daina (1996) in "Experiencing Geometry 

Euclidean and Non-Euclidean with History", there are few types of angles involved in 

polyhedron. Plane angle is the angle at the corner of a polygonal face. Dihedral angle 

is the angle created by two adjacent faces which have two sides joined to form an edge; 

it can be measured by the angle of two rays that I ie in the planes which have a vertex 

on the edge and perpendicular to the edge as shown in Figure 1.2. On the other hand, 

solid angle is the portion of interior of a polyhedron at a vertex which is surrounded 

by three or more plane angles as shown in Figure 1.3 below. 

"'--::-----------
" ----

Figure 1.2 Dihedral angle 

Figure 1.3 Solid angle 
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There are few common properties shared by polyhedra. 

i. Naming of polyhedra 

Naming of polyhedra is almost similar to the naming of polygon but more complicated. 

Naming of polyhedra based on Classical Greek according to its number of faces as 

shown in Table 1.1 below. Though, there are some special polyhedra have their own 

name such as Szilassi polyhedron. 

Table 1.1 Naming polyhedra 

Number of faces Polyhedron 

4 Tetrahedron 

5 Pentahedron 

6 Hexahedron 

7 Heptahedron 

8 Octahedron 

9 Nonahedron 

10 Decahedron 

II Undecahedron 

12 Dodecahedron 

14 Tetradecahedron 

20 Icosahedron 

24 Icositetrahedron 

30 Tricontahedron 
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Table 1.1 Naming polyhedra (continued) 

32 Icosidodecahedron 

60 Hexecontahedron 

90 enneacontahedron 

II. Edges 

Edges have two important features that it just joins two faces and two vertices with the 

exception of those complex polyhedra which constructed in unitary three-space with 

six dimensions. 

iii. Euler Characteristic 

All the polyhedron obey Euler Characteristic with V-E+F= 2, where V is the number 

of vertices, E is the number of edges, and F represents the number of faces. According 

to Malkevitch, this formula was discovered in around 1750 by Euler, and first proven 

by Legendre in 1794. 

IV. Duality 

There exists a dual polyhedron for every polyhedron. Dual polyhedron is the 

polyhedron that associates with another polyhedron with one faces correspond to the 

vertices of another and vice versa. Thus, the number of faces of one polyhedron is 

equal to the number of vertices of its dual polyhedron. 
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v. Vertex figure 

A vertex figure which consisting of the vertices which join to it can be defined from 

every vertex. In another word, vertex figure is formed when a polyhedron is truncated. 

Vertex figure is illustrated in Figure 1.4 below. 

Figure 1.4 Vertex figure 

As indicated by Alexandrov (2005), a polyhedron is said to be convex if it 

composed of many planar polygons so that it is possible for a polygon to pass from 

one to another by polygons which having common sides of segment of sides and the 

whole figure lies on one side of the plane of each constituent polygons. 

A polyhedron is said to be regular if its faces are made up of regular polygons 

that have equal sides and angles. It means that every face consists of same number of 

vertices and vice versa. 

1.1.1 Platonic Solids 

Another name for platonic solids is regular polyhedron. It is convex regular polyhedra. 

Platonic solids are perfectly regular solids with congruent faces which made up of 
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identical polygons. It follows few of conditions where all its faces are identical, all its 

dihedral angles are the same and all its sides are equal. 

There are only five platonic solids exist. The five platonic solids are 

tetrahedron, cube, octahedron, dodecahedron, and icosahedron as shown in Figure 1.5 

below. 

I~\ 
/ I 

\ .. 
I 
\ 

/ 
I 

I 

' ... -- - ,-/' 
- - - ~~j/ 

Ic():>ahctiron 

Figure 1.5 Platonic Solids 

~
.... -- -- - -,/ 

1.1.2 Archimedean Solids 

dodccahetl ron 

Sometimes are called Archimedean Polyhedra which are convex semi regular 

polyhedra. Archimedean polyhedra are composed of equilateral and equiangular but 

not similar polygons. Its faces might be made up of different types of polygons but its 

vertices are identical. Every vertex of Archimedean Solids is congruent which means 

the faces must be arranged in the same order around each vertex. 
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There are thirteen Archimedean Solids which named truncated tetrahedron, 

truncated cube, truncated octahedron, truncated dodecahedron, truncated icosahedron, 

cuboctahedron, icosidodecahedron, rhombicuboctahedron, rhombicosidodecahedron, 

great rhomblcuboctahedron, great rhombicosidodecahedron, snub cube, and snub 

dodecahedron. All these Archimedean solids are shown in the Figure 1.6 below. 

r-:- -), /~ /"I~ - ~\ .. ~ 
/ , 

/ ',;1) (;;!('i' I! ' \ 
I 

~'9 v~"'-· :".'1 ~:. ) 
I~ \' .'/' 

" / "'--_?: / 

Truncated Truncated Truncated 
tetrahedron Truncated cube octahedron dodecahedron 

tElJ
' " 
i~>": ", . . , 

, .,' 
-_ . ., 

Cuboctahedron Rhombicuboctahedron 

Truncated 
icosahedron 

Icosidodecahedron Rhombicosidodecahedron 

Great 
rhom bicuboctahedron 

Great 
rhombicosidodecahedron 

Figure] .6 Archimedean Solids 

1.1.3 Kepler Poinsot Solids 

Snub cube 

Snub 
dodecahedron 

There exist four types of regular non-convex polyhedra or can be called regular 

concave polyhedra which known as Kepler Poinsot Solids. They are polyhedra that 
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made up of regular concave polygons with intersecting planes. The number of faces 

meeting at each vertex is the same. 

Small stellated dodecahedron and great stellated dodecahedron are known as 

Kepler solids which discovered by astronomer Johannes Kepler whereas the great 

icosahedron and great dodecahedron discovered by French mathematician, Louis 

Poinsot, named as Poinsot solids. The four Kepler Poinsot solids are shown in the 

Figure 1.7 below . 

~ • • ~ . \ . \ 
, ~ 

" 

Small stellated Great stellated Great Great 
dodecahedron dodecahedron icosahedron dodecahedron 

Figure 1.7 Kepler Poinsot Solids 

1.2 Historical Background 

Carved stones from the Neolithic time about 1000 years before Plato have been 

discovered in Scotland. They are oldest known regular polyhedra. Several of the 

regular polyhedra and the semiregular cuboctahedron were known in Babylon, Egypt, 

India and China. For example, the ancient pyramids at Giza, Egypt was built over 

4500 years ago. The geometry was developed during the golden period of ancient 

Greek culture. 
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The earliest written record of these polyhedra shapes are came from classical 

Greek. After that, Islamic scholars continued to make it advances, for example in the 

tenth century Abu'l Wafa describes two and three dimensional construction. 

Meanwhile in China, the formula for the volume of a truncated pyramid was derived 

by Liu Hui by dissecting pyramid into a central square-based prism. 

In the Ranaissance, the Greek literature was translated to Latin from Arabic 

and later from Greek. Pierro della Francesca (1410-1492) studied the five regular 

platonic solids and six of the semi regular Archimedean polyhedra. Leon Battista 

Alberti (1404-1472) and Pierro della Francesca introduced the theory of the 

perspective according to Vitruvius (50 B.C). 

Luca Pacioli (1445-1517) described the Platonic solids and six of Archimedes 

polyhedra. On the other hand Leonardo da Vinci drew the polyhedra in Pacioli's book 

"De Divina Proportione" but he did not know the collection by Pappus and thought 

that there were an unlimited number of semi regular polyhedra. Albrecht DUrer 

designed the polygons of the regular polyhedra and nine of the semiregular polyhedra 

onto a plane in the form of "nets" (flat patterns) in Underweisung year 1525. 

(Cromwell, 1997) 

1.2.1 Platonic Solids 

The regular polyhedra were attributed by ancient Greek and studied by a group of 

Greek mathematicians under the supervision of Pythagoreans as far back as 500BC. 
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