## POLYHEDRA

## WANG SIEW ENN

S484H<br>PERPISTAKAAN<br>THIS DISSERTATION IS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

MATHEMATICS WITH ECONOMICS PROGRAMME SCHOOL OF SCIENCE AND TECHNOLOGY

UNIVERSITI MALAYSIA SABAH

## UNIVERSITI MAE-AYSIA SABAH



## DECLARATION

I hereby declare that this dissertation contains my original research work. Source of findings reviewed herein have been duly acknowledged.

## 24 April 2008



WANG SIEW ENN
HS 2005-1068

## CERTIFIED BY

## Signature

## 1. SUPERVISOR

(Assoc. Prof. Dr. Ho Ching Mun)

2. EXAMINER 1
(Mr. Victor Ting Mung Ming)

3. EXAMINER 2
(Dr. Aini Janteng)
Anions
4. DEAN
(Supt/KS. Assoc. Prof. Dr. Shariff A. Kadir S. Omang)

## ACKNOWLEDGEMENT

I am glad to acknowledge the help and encouragement I have received whilst undertaking this project.

First of foremost, I would like to thanks my supervisor Assoc. Prof. Dr. Ho Chong Mun of the School of Science and Technology for his supervision. He gave me a lot of ideas in exploring my thesis topic which are included in this dissertation.

Besides, I would like to thanks my family and friends for their support with their encouragement, I am more confident in doing the research.

Thank you.

WANG SIEW ENN
HS 2005-1068


#### Abstract

This dissertation was intended to offer an explanation of the Platonic Solids, Archimedean Solids and Kepler Poinsot Solids,at once simple and practical but not too speculative. There are some characteristic and properties have been observed and discussed. Every polyhedron follows the Euler's Formula and has its dual polyhedron. However, there is an exception of Euler's Formula for Kepler Poinsot Solids. All the Platonic Solids, Archimedean Solids and Kepler Poinsot solids can be described in an easier form like schlafli symbol and vertices configuration. The tessellation of polyhedron shows its arrangement of polygonal faces. Archimedean can be formed by truncation and snubbing process of Platonic Solids. On the other hand, Kepler Poinsot can be constructed by stellations of Platonic Solids. Some regular polyhedra share the common vertex arrangement or same edge arrangement.


#### Abstract

ABSTRAK

Kajian ini menyelidik tentang Pepejal Platonik, Pepejal Archimedean, dan Pepejal Kepler Poinsot. Ciri-ciri am telah dikaji dalam kajian ini. Setiap polihedron mematuhi hukum Euler dan mempunyai polyhedron dual. Namun begitu, terdapat pengecualian untuk kes Pepejal Kepler Poinsot dalam hukum Euler. Semua polihedron seragam dan semiseragam dibentang dalam bentuk yang lebih mudah iaitu simbol schlafli dan configurasi puncak. Tessellation bagi polyhedron menggambarkan susunan untuk suatu polyhedron. Pepejal Archimedean boleh dihasilkan dengan kaedah truncation dan snubbing. Di samping itu, Pepejal Kepler Poinsot boleh dibentuk melalui stellation bagi Pepejal Platonik. Beberapa polyhedron seragam menikmati susunan puncak yang sama atau susunan tepi yang sama.


## CONTENTS

Page Number
DECLARATION ..... ii
CERTIFICATION ..... iii
ACKNOWLEDGEMENT ..... iv
ABSTRCT ..... v
ABSTRAK ..... vi
LIST OF CONTENTS ..... vii
LIST OF TABLES ..... X
LIST OF FIGURES ..... xi
TABLE OF SYMBOLS ..... xiv
CHAPTER 1 INTRODUCTION ..... 1
1.1 What Is Polyhedron ..... 1
1.1.1 Platonic Solids ..... 5
1.1.2 Archimedean Solids ..... 6
1.1.3 Kepler Poinsot Solids ..... 7
1.2 Historical Background ..... 8
1.2.1 Platonic Solids ..... 9
1.2.2 Archimedean Solids ..... 10
1.2.3 Kepler Poinsot Solids ..... 11
1.3 Why Study Polyhedra? ..... 11
1.4 Objective of Study ..... 12
1.5 Scope of Study ..... 13
CHAPTER 2 LITERATURE REVIEW ..... 14
2.1 Overview ..... 14
2.2 Previous Research on Polyhedra ..... 15
2.3 Graph as Polyhedra; Polyhedra as Graph ..... 17
2.4 Angles of Polyhedra ..... 17
2.5 Volume of Polyhedra ..... 18
CHAPTER 3 METHODOLOGY ..... 20
3.1 Euler's Formula ..... 20
3.1.1 Euler's own Proof ..... 22
3.1.2 Legendre's Proof ..... 23
3.1.3 Cauchy's Proof ..... 25
3.1.4 Comparison among Euler's Proof, Legendre's Proof and Cauchy's Proof ..... 27
3.1.5 What did Euler's Formula tell us? ..... 27
3.2 Formula Derivations for Polyhedra ..... 28
3.2.1 Dihedral Angle ..... 28
3.2.2 Apothem, polygon area and surface area ..... 30
3.2.3 Inradius and circumradius ..... 31
3.2.4 Volume ..... 32
3.3 Definition of Tessellation, Schlafli Symbol and Vertices Configuration ..... 32
3.4 There Are Only Five Platonic Solids ..... 33
3.4.1 Proved by Descartes Theorem ..... 34
3.4.2 Proved by Sum of Interior Angles ..... 36
CHAPTER 4 RESULT AND DISCUSSION ..... 39
4.1 Number of Vertices, Edges, Faces and Euler's Formula ..... 39
4.1.1 Platonic Solids ..... 39
4.1.2 Archimedean Solids ..... 40
4.1.3 Kepler Poinsot Solids ..... 42
4.2 General formula of Angles, Radius and Volume for Platonic Solids ..... 44
4.2.1 Tetrahedron ..... 45
4.2.2 Cube ..... 46
4.2.3 Octahedron ..... 48
4.2.4 Dodecahedron ..... 49
4.2.5 Icosahedron ..... 50
4.3 Tessellation, Schlafli Symbol, and Vertices configuration ..... 52
4.3.1 Platonic Solids ..... 52
4.3.2 Archimedean Solids ..... 53
4.3.3 Kepler Pointsot Solids ..... 57
4.4 Maple Output of Polyhedra ..... 58
4.4.1 Platonic Solids ..... 58

Nins
4.4.2 Archimedean Solids ..... 60
4.4.3 Kepler Poinsot Solids ..... 65
4.5 Duality ..... 66
4.5.1 Platonic Solids ..... 67
4.5.2 Archimedean Solids ..... 69
4.5.3 Kepler Poinsot Solids ..... 74
4.6 Relationship among Polyhedra ..... 77
4.6.1 Relationships between Platonic Solids ..... 77
4.6.2 Relationship between Platonic Solids and Archimedean Solids ..... 78
4.6.3 Relationship between regular polyhedra ..... 78
CHAPTER 5 CONCLUSION AND SUGGESTION
5.1 Conclusion ..... 80
5.2 Suggestion on further research ..... 83
REFERENCES ..... 85
APPENDIX ..... 87
GLOSSARY ..... 103

## LIST OF TABLES

Table Number
Page Number
1.1 Naming polyhedra ..... 3
3.1 Differences for Euler's, Legendre's and Cauchy's proof ..... 27
4.1 Summary table of number of vertices, edges and faces for Platonic Solids ..... 40
4.2 Summary table of number of vertices, edges and faces for Archimedean Solids ..... 41
4.3 Summary table of number of vertices, edges and faces for Kepler Poinsot Solids ..... 43
4.4 Summary table for general formula ..... 44
4.5 Tessellation, schlafli symbol and vertices configurations for Platonic Solids ..... 52
4.6 Tessellation, schlafli symbol and vertices configurations for Archimedean Solids ..... 54
4.7 Schlafli symbol for Kepler Poinsot Solids ..... 57
4.8 Duals of polyhdra ..... 75
4.9 The relationship between regular polyhedra ..... 79

## LIST OF FIGURES

1.1 Basic terms of polyhedron ..... 1
1.2 Dihedral angle ..... 2
1.3 Solid angle ..... 2
1.4 Vertex figure ..... 5
1.5 Platonic Solids ..... 6
1.6 Archimedean Solids ..... 7
1.7 Kepler Poinsot Solids ..... 8
3.1 Octahedron before truncation process ..... 23
3.2 Octahedron after truncation process ..... 23
3.3 Radial projection of octahedron ..... 24
3.4 Planar network of cube ..... 26
3.5 Planar network of cube after adding diagonals to any non-triangular faces ..... 26
3.6 Planar network of cube after removing of one triangular Face ..... 26
3.7 Example of three triangles forming a vertex ..... 28
3.8 Diagram of n -gon ..... 30
3.9 Diagram to show the inradius and circumradius ..... 31
3.10 Tetrahedron ..... 36
3.11 Octahedron ..... 37
3.12 Icosahedron ..... 37
3.13 Cube ..... 37
3.14 Dodecahedron ..... 38
4.1 Maple output of tetrahedron ..... 58
4.2 Maple output of cube ..... 59
4.3 Maple output of octahedron ..... 59
4.4 Maple output of dodecahedron ..... 59
4.5 Maple output of icosahedron ..... 60
4.6 Maple output of truncated tetrahedron ..... 60
4.7 Maple output of truncated cube ..... 61
4.8 Maple output of truncated octahedron ..... 61
4.9 Maple output of truncated dodecahedron ..... 61
4.10 Maple output of truncated icosahedron ..... 62
4.11 Maple output of cuboctahedron ..... 62
4.12 Maple output of icosidodecahedron ..... 62
4.13 Maple output of rhombicuboctahedron ..... 63
4.14 Maple output of rhombicosidodecahedron ..... 63
4.15 Maple output of great rhombicuboctahedron ..... 63
4.16 Maple output of great rhombicosidodecahedron ..... 64
4.17 Maple output of snub cube ..... 64
4.18 Maple output of snub dodecahedron ..... 64
4.19 Maple output of small stellated dodecahedron ..... 65
4.20 Maple output of great stellated dodecahedron ..... 65
4.21 Maple output of great icosahedron ..... 66
4.22 Maple output of great dodecahedron ..... 66
4.23 Maple output for dual of tetrahedron ..... 67
4.24 Maple output for dual of cube ..... 68
4.25 Maple output for dual of octahedron ..... 68
4.26 Maple output or dual of dodecahedron ..... 68
4.27 Maple output for dual of icosahedron ..... 69
4.28 Maple output for dual of truncated tetrahedron ..... 69
4.29 Maple output for dual of truncated cube ..... 70
4.30 Maple output for dual of truncated octahedron ..... 70
4.31 Maple output for dual of truncated octahedron ..... 70
4.32 Maple output for dual of truncated icosahedron ..... 71
4.33 Maple output for dual of cuboctahedron ..... 71
4.34 Maple output for dual of icosidodecahedron ..... 71
4.35 Maple output for dual of rhombicuboctahedron ..... 72
4.36 Maple output for dual of rhombicosidodecahedron ..... 72
4.37 Maple output for dual of great rhombicuboctahedron ..... 72
4.38 Maple output for dual of great rhombicosidodecahedron ..... 73
4.39 Maple output for dual of snub cube ..... 73
4.40 Maple output for dual of snub dodecahedron ..... 73
4.41 Maple output for dual of small stellated dodecahedron ..... 74
4.42 Maple output for dual of great stellated dodecahedron ..... 74
4.43 Maple output for dual of great icosahedron ..... 75
4.44 Maple output for dual of great dodecahedron ..... 75
4.45 Interrelationship of tetrahedron, cube and octahedron ..... 77

## TABLE OF SYMBOLS

$=$ equal
$+\quad$ addition

- substraction
$\Sigma$ summation


## CHAPTER 1

## INTRODUCTION

### 1.1 What Is Polyhedron?

A polyhedron is a closed, three-dimensional version of polygon. It is composed of polygons connected at their edge in order to enclose space. In another word, it is a geometric object with flat surfaces and straight edges. The plural of polyhedron is polyhedra or polyhedrons (Alexander, 2003).

The word polyhedron is derived from Greek in which poly- means "many" and -edron means "base", "seat" or "face". A polyhedron consists of vertex (vertices in plural), edges and faces as shown in Figure 1.1 below.


Figure 1.1 Basic terms of polyhedron

A face of the polyhedron is each of its polygonal sides whereas an edge is a line segment where two faces meet, it is formed by the sides of two faces. A point called vertex is formed when few edges and faces are meet. This modified definition is given by Cromwell (1997) in his book "Polyhedra".

According to Henderson \& Daina (1996) in "Experiencing Geometry Euclidean and Non-Euclidean with History", there are few types of angles involved in polyhedron. Plane angle is the angle at the corner of a polygonal face. Dihedral angle is the angle created by two adjacent faces which have two sides joined to form an edge; it can be measured by the angle of two rays that lie in the planes which have a vertex on the edge and perpendicular to the edge as shown in Figure 1.2. On the other hand, solid angle is the portion of interior of a polyhedron at a vertex which is surrounded by three or more plane angles as shown in Figure 1.3 below.


Figure 1.2 Dihedral angle


Figure 1.3 Solid angle

There are few common properties shared by polyhedra.
i. Naming of polyhedra

Naming of polyhedra is almost similar to the naming of polygon but more complicated. Naming of polyhedra based on Classical Greek according to its number of faces as shown in Table 1.1 below. Though, there are some special polyhedra have their own name such as Szilassi polyhedron.

Table 1.1 Naming polyhedra

| Number of faces | Polyhedron |
| :--- | :--- |
| 4 | Tetrahedron |
| 5 | Pentahedron |
| 6 | Hexahedron |
| 7 | Octahedron |
| 8 | Nonahedron |
| 10 | Decahedron |
| 11 | Tetradecahedron |
| 12 | Icosahedron |
| 14 | Icositetrahedron |
| 20 | Tricontahedron |
| 24 |  |
| 30 |  |

Table 1.1 Naming polyhedra (continued)

| 32 | Icosidodecahedron |
| :--- | :--- |
| 60 | Hexecontahedron |
| 90 | enneacontahedron |

## ii. Edges

Edges have two important features that it just joins two faces and two vertices with the exception of those complex polyhedra which constructed in unitary three-space with six dimensions.

## iii. Euler Characteristic

All the polyhedron obey Euler Characteristic with $V-E+F=2$, where $V$ is the number of vertices, $E$ is the number of edges, and $F$ represents the number of faces. According to Malkevitch, this formula was discovered in around 1750 by Euler, and first proven by Legendre in 1794.
iv. Duality

There exists a dual polyhedron for every polyhedron. Dual polyhedron is the polyhedron that associates with another polyhedron with one faces correspond to the vertices of another and vice versa. Thus, the number of faces of one polyhedron is equal to the number of vertices of its dual polyhedron.

## v. Vertex figure

A vertex figure which consisting of the vertices which join to it can be defined from every vertex. In another word, vertex figure is formed when a polyhedron is truncated. Vertex figure is illustrated in Figure 1.4 below.


Figure 1.4 Vertex figure

As indicated by Alexandrov (2005), a polyhedron is said to be convex if it composed of many planar polygons so that it is possible for a polygon to pass from one to another by polygons which having common sides of segment of sides and the whole figure lies on one side of the plane of each constituent polygons.

A polyhedron is said to be regular if its faces are made up of regular polygons that have equal sides and angles. It means that every face consists of same number of vertices and vice versa.

### 1.1.1 Platonic Solids

Another name for platonic solids is regular polyhedron. It is convex regular polyhedra. Platonic solids are perfectly regular solids with congruent faces which made up of
identical polygons. It follows few of conditions where all its faces are identical, all its dihedral angles are the same and all its sides are equal.

There are only five platonic solids exist. The five platonic solids are tetrahedron, cube, octahedron, dodecahedron, and icosahedron as shown in Figure 1.5 below.


Figure 1.5 Platonic Solids

### 1.1.2 Archimedean Solids

Sometimes are called Archimedean Polyhedra which are convex semi regular polyhedra. Archimedean polyhedra are composed of equilateral and equiangular but not similar polygons. Its faces might be made up of different types of polygons but its vertices are identical. Every vertex of Archimedean Solids is congruent which means the faces must be arranged in the same order around each vertex.

There are thirteen Archimedean Solids which named truncated tetrahedron, truncated cube, truncated octahedron, truncated dodecahedron, truncated icosahedron, cuboctahedron, icosidodecahedron, rhombicuboctahedron, rhombicosidodecahedron, great rhombicuboctahedron, great rhombicosidodecahedron, snub cube, and snub dodecahedron. All these Archimedean solids are shown in the Figure 1.6 below.


Figure 1.6 Archimedean Solids

### 1.1.3 Kepler Poinsot Solids

There exist four types of regular non-convex polyhedra or can be called regular concave polyhedra which known as Kepler Poinsot Solids. They are polyhedra that
made up of regular concave polygons with intersecting planes. The number of faces meeting at each vertex is the same.

Small stellated dodecahedron and great stellated dodecahedron are known as Kepler solids which discovered by astronomer Johannes Kepler whereas the great icosahedron and great dodecahedron discovered by French mathematician, Louis Poinsot, named as Poinsot solids. The four Kepler Poinsot solids are shown in the Figure 1.7 below.


Figure 1.7 Kepler Poinsot Solids

### 1.2 Historical Background

Carved stones from the Neolithic time about 1000 years before Plato have been discovered in Scotland. They are oldest known regular polyhedra. Several of the regular polyhedra and the semiregular cuboctahedron were known in Babylon, Egypt, India and China. For example, the ancient pyramids at Giza, Egypt was built over 4500 years ago. The geometry was developed during the golden period of ancient Greek culture.

The earliest written record of these polyhedra shapes are came from classical Greek. After that, Islamic scholars continued to make it advances, for example in the tenth century Abu'l Wafa describes two and three dimensional construction. Meanwhile in China, the formula for the volume of a truncated pyramid was derived by Liu Hui by dissecting pyramid into a central square-based prism.

- In the Ranaissance, the Greek literature was translated to Latin from Arabic and later from Greek. Pierro della Francesca (1410-1492) studied the five regular platonic solids and six of the semi regular Archimedean polyhedra. Leon Battista Alberti (1404-1472) and Pierro della Francesca introduced the theory of the perspective according to Vitruvius (50 B.C).

Luca Pacioli (1445-1517) described the Platonic solids and six of Archimedes polyhedra. On the other hand Leonardo da Vinci drew the polyhedra in Pacioli's book "De Divina Proportione" but he did not know the collection by Pappus and thought that there were an unlimited number of semi regular polyhedra. Albrecht Dürer designed the polygons of the regular polyhedra and nine of the semiregular polyhedra onto a plane in the form of "nets" (flat patterns) in Underweisung year 1525. (Cromwell, 1997)

### 1.2.1 Platonic Solids

The regular polyhedra were attributed by ancient Greek and studied by a group of Greek mathematicians under the supervision of Pythagoreans as far back as 500 BC .

## REFERENCES

Alexandrov, A.D. 2005. Convex Polyhedra. Springer Berlin Heidelberg, New York.

Alexander, D.C. \& Koerberlein, G.M. 2003. Elementary Geometry for College Students. Houghton Mifflin Company, New York.

Chong, W.H. 2002. Polyhedra. Undergraduate Research Opportunity Programme in Science. National University of Singapore, Singapore (Tidak diterbitkan).

Coxeter, H.C.M. 1973. Regular Polytopes. Ed. Ke-3. Dover Publication, Inc, New York. 4-73.

Cromwell, P.R. 1997. Polyhedra. Cambridge University Press, Cambridge.

Dobrovolskis, A.R. 1996. Inertia of any Polyhedra. Icarus 124 (2): 698-704.

Grunbaum, B. 2007. Graphs of polyhedra; polyhedra as graph. Discrete Mathematics 307 (3-5): 445-463.

Henderson, D.W. \& Daina. T. 1996. Experiencing Geometry Euclidean and NonEuclidean with History. Ed. ke-3. Pearson Prentice Hall, New York.

Jacobs, H.R. 2004. Geometry: Seing, Doing, Understanding. Ed. ke-3. W.H.Freeman and Company, New York.

Kavitha, K. 2002. Polyhedra. Undergraduate Research Opportunity Programme in Science. National University of Singapore, Singapore (Tidak diterbitkan).

Malkevitch, J. 2007. Euler's polyhedral formula. Feature Column Monthly Essays on Mathematical Topics. Retrieved 20 August 2007 from www.ams.org/featurecolumn/archieve/eulers-formula.html.

Ong, H.L., Huang, H.C. \& Huin, W.M. 2003. Finding the exact volume of a polyhedron. Advances in Engineering Software 34 (6): 351-356.

Pook,L. 2003. Flexagons Inside Out. Cambridge University Press, Cambridge.

Rovenski,V. 2000. Geometry of Curve and Surfaces with MAPLE. Birkhauser Boston, New York.

Stahl, S. 2003. Geometry: From Euclid to Knots. Pearson Education, New Jersey.

Wenninger,M.J. 1983. Dual Models. Cambridge University Press, Cambridge.

Yip, B. \& Klette, R. 2003. Angle counts for isothetic polygons and polyhedra. Pattern Recognition Letters 24 (9-10): 1275-1278.

