# ANALYSIS AND SIMULATION OF CONVERTER-FED DC MOTOR DRIVE BY USING MATLAB

# **MYJESSIE BINTI SONGKIN**

PERPUSTAKAAN IMINERSITI MALAYSIA SABAH

# SCHOOL OF ENGINEERING AND IFORMATION TECHNOLOGY UNIVERSITY MALAYSIA SABAH KOTA KINABALU

2006



| UNIVERSIT | MALAYSIA | SABAH |
|-----------|----------|-------|
|-----------|----------|-------|

| JDUL : ANALYSIS           | AND   | SIMULATION OF CONVERTENTED PC      |
|---------------------------|-------|------------------------------------|
| MOTOK DRIVE               | IMDA  | KETURUTERAAN ELEKTRIK & ELEKTRONIK |
| JIEIGA - <u>MASSING A</u> | SES   | IPENGAJIAN: 2002/2003 - 2005/2006  |
| Saya MYJESSIE             | BINTI | SONEKIN                            |
|                           |       | (HURUF BESAR)                      |

- Tesis adalah hakmilik Universiti Malaysia Sabah. 1.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. 3.
- \*\* Sila tandakan (/). 4.

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972).

PUMS 99:1

TERHAD

SULIT

TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap: WDT 19, FLN 1607A

89157 KOTA KINABALU,

SABA BELUD

Tarikh : 8 05

Disahkan oleh

(PANDATANGAN PUSTAKAWAN)

Nama Penyelia

Tarikh:

CATATAN: \* Potong yang tidak berkenaan.

- \* Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada berkuasa/organasasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
- \* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan,atau Laporan Projek Sarjana Muda (LPSM)



## DECLARATION

I hereby declare that the work in this dissertation is my own except for quotations and summaries which I have duly acknowledged.

**MARCH 2006** 

-i Ouef

MYJESSIE BINTI SONGKIN (HK2002-3167)

CERTIFIED BY

ruh 11.1

PROF. DR. NEELAKANTAN PRABHAKARAN (SUPERVISOR)

MR8.SARIDAH MOHD.DUN (EXAMINER)

MR.KENNETH (CHAIRMAN)



#### ACKNOWLEDGEMENT

I would like to convey my most gratitude to my supervisor Prof. Dr. Neelakantan Prabhakaran, school of Engineering and Information Technology (SEIT), Electrical and Electronic Engineering, University Malaysia Sabah (UMS) for his immensely incisive and constructive guidance in all stages of the project work, and providing the priceless knowledge and ideas as well as the facilities in completing this project. His timely encouragement and advices helped in improvising the quality and thus, greatly facilitating the shaping of this dissertation.

Deepest appreciation to my parents for their encouragement, patience, financial support and valuable advices in the process of developing this dissertation.

Last but not least, affectionate thanks to my course mates and friends for their priceless helps and knowledge sharing.



### ABSTRAK

Kajian perbandingan tentang gelung terbuka dan tertutup bagi fungsi pemindahan motor dc dan gambarajah blok,pengawal PI, ciri-ciri kelajuan tork dan simulasi MATLAB bagi tiga fasa ac-dc thyristor penukar-suap pacuan motor dc dibentangkan. Simulasi penukarsuap pacuan motor dc dikaji dengan lebih mendalam, menggunakan SimPowerSystems dalam MATLAB Simulink kerana memberikan pencapaian yang lebih baik berbanding dengan pengaturcaraan perisian yang lain. Pengawal Proportional plus integral (PI) direka untuk mengurangkan ralat pada sistem dan memperbaiki respon dinamik. Pemalar K<sub>P</sub> dan K<sub>I</sub> dalam pengawal PI boleh ditukar untuk mendapatkan pencapaian vang memuaskan. Projek ini membuat perbandingan pelbagai kajian dalam mereka penukar-suap pacuan motor dc dengan dan tanpa menggunakan sistem suap-balik dan simulasi pacuan pada bebanan dan kelajuan asal yang berlainan. Dengan peningkatan pemalar K<sub>P</sub> dan K<sub>I</sub> lebih cenderung untuk mengurangkan ralat pada sistem dan memperbaiki masa untuk mencapai suatu tahap yang malar. Namun begitu, KP dan KI vang tinggi akan memburukkan lagi kestabilan tindakbalas sementara bagi sistem tersebut. Pengawal yang baik akan menukar balik kelajuan motor kepada nilai asal apabila berlaku perubahan pada beban tork. Penukar yang dicadangkan telah direka dan diuji dalam makmal menggunakan rangsangan berasingan motor dc. Keputusan eksperimen yang diperolehi mampu menyokong teori dan keputusan simulasi yang telah dibuat.



### ABSTRACT

A comparative study of open loop and closed loop dc motor transfer function and block diagram, PI controller, speed - torgue characteristics and MATLAB simulation of three phase ac-dc thyristor converter-fed dc motor drive is presented. The simulation of converter-fed dc motor drive is studied in detailed, employing the SimPowerSystems in MATLAB Simulink because it has been found to offer better overall performance among other programming software. A Proportional plus Integral (PI) controller is design to reduce the system errors and improve the dynamics responses. The constant K<sub>P</sub> and K<sub>I</sub> in PI controller can be changed to meet the acceptable performance. This project compares a various study in designing the converter-fed dc motor drive with and without system feedback and simulates drive under different loading and speed references. By increasing the constant K<sub>P</sub> and K<sub>I</sub> tends to reduce the systems errors and improve the overshoot and settling time. However, large  $K_P$  and  $K_I$  will worsen the transients' stability. A good controller will change back the motor speed to the normal value due to the change of load torque. The proposed converter is designed, constructed and tested in the lab using the separately excited dc motor. The experimental results are shown to be in good agreement with the simulated results.



### CONTENTS

| DECLARATION     | i    |
|-----------------|------|
| ACKNOWLEDGEMENT | 11   |
| ABSTRAK         | iii  |
| ABSTRACT        | iv   |
| CONTENTS        | V    |
| LIST OF FIGURES | vi   |
| LIST OF TABLES  | vii  |
| LIST OF SYMBOLS | viii |

# CHAPTER 1 INTRODUCTION

| 1.1 INTRODUCTION                                | 1 |
|-------------------------------------------------|---|
| 1.2 OBJECTIVES OF THE PROJECT                   | 2 |
| 1.3 PROJECT APPROACH                            | 3 |
| 1.3.1 Data Collection and Literature Survey     | 3 |
| 1.3.2 Through Supervisor and lecturers Guidance | 3 |
| 1.4 ORGANIZATION OF THE PROJECT                 | 3 |
| 1.4 SUMMARY                                     | 5 |



Page No:

## CHAPTER 2 LITERATURE REVIEW

| 2.1 INTRODUCTION                                | 6  |
|-------------------------------------------------|----|
| 2.2 SEPARATELY EXCITED DC MOTOR CHARACTERICTICS | 7  |
| 2.2.1 Torque – Speed Characteristics            | 9  |
| 2.3 PHASE CONTROLLED CONVERTERS                 | 11 |
| 2.4 FEEDBACK CONTROL SYSTEM                     | 12 |
| 2.5 PROPORTIONAL PLUS INTEGRAL (PI) CONTROLLER  | 13 |
| 2.6 SUMMARY                                     | 14 |

# CHAPTER 3 METHODOLOGY

| 3.1 INTRODUCTION                                   | 15 |
|----------------------------------------------------|----|
| 3.2 DC MOTOR TRANSFER FUNCTION                     | 15 |
| 3.3 BLOCK DIAGRAM AND TRANSFER FUNCTION SUBSYSTEMS | 18 |
| 3.3.1 DC Motor and load                            | 18 |
| 3.3.2 Converter                                    | 19 |
| 3.3.3 The Current and Speed Controller             | 20 |
| 3.3.4 Current feedback                             | 20 |
| 3.3.5 Speed Feedback                               | 20 |
| 3.4 SUMMARY                                        | 21 |

## CHAPTER 4 SIMULATION USING MATLAB M-FILE



| 4.1 INTRODUCTION                          | 22 |
|-------------------------------------------|----|
| 4.2 OPEN LOOP DC MOTOR TRANSFER FUNCTION  | 22 |
| 4.3 PROPORTIONAL INTEGRAL (PI) CONTROLLER | 24 |
| 4.4 DISCUSSION                            | 25 |
| 4.5 SUMMARY                               | 26 |

CHAPTER 5 SIMULATION USING SIMULINK (BLOCK DIAGRAM AND TRANSFER FUNCTION)

| 5.1 INTRODUCTION                                             | 27 |
|--------------------------------------------------------------|----|
| 5.2 TRANSFER FUNCTION OF THE SUBSYSTEM                       | 28 |
| (Adopted from R.Krishnan, 2001, Page 74,76,78 and 79)        |    |
| 5.2.1 Step By step deviation of a dc motor transfer function | 28 |
| 5.2.2 Design of current controller                           | 29 |
| 5.2.3 Speed Controller                                       | 30 |
| 5.3 FLOWCHART FOR SIMULATION                                 | 31 |
| 5.4 SIMULATION USING SIMULINK                                | 32 |
| 5.5 DISCUSSION                                               | 34 |
| 5.6 SUMMARY                                                  | 34 |

CHAPTER 6 SIMULATION USING SIMPOWERSYSTEMS



| 6.1 INTRODUCTION                                                          | 36 |
|---------------------------------------------------------------------------|----|
| 6.2 SIMULINK SCHEMATIC DIAGRAMS                                           | 36 |
| 6.2.1 Design of Speed controller                                          | 37 |
| 6.2.2 Design of current controller                                        | 37 |
| 6.2.3 Speed controller converter-fed of dc motor drive Simulink schematic | 38 |
| 6.2.4 Simulation Parameters                                               | 39 |
| 6.3 DISCUSSION                                                            | 58 |
| 6.4 SUMMARY                                                               | 61 |
|                                                                           |    |

# CHAPTER 7 EXPERIMENTAL RESULTS

| 7.1 INTRODUCTION           | 62 |
|----------------------------|----|
| 7.2 RESULTS AND DISCUSSION | 63 |
| 7.3 SUMMARY                | 67 |

# CHAPTER 8 CONCLUSION

| 8.1 SUMMARY         | 68 |
|---------------------|----|
| 8.2 FUTURE RESEARCH | 69 |
| REFERENCES          | 71 |
| APPENDICES          | 73 |



| APPENDIX A: MOTOR RATINGS                                 | 74 |
|-----------------------------------------------------------|----|
| APPENDIX B: CALCULATION FOR DC MOTOR TRANSFER FUNCTION    | 75 |
| APPENDIX C: DC MOTOR RATINGS AND DEVICES BLOCK PARAMETERS | 78 |
| FOR SIMULATION IN CHAPTER 6                               |    |



# LIST OF FIGURES

| Figure     | Title                                                  | Page No. |
|------------|--------------------------------------------------------|----------|
| Figure 2.1 | Equivalent circuit for a separately excited dc motor   | 7        |
| Figure 2.2 | Controller schematic for the three-phase converter     | 12       |
| Figure 2.3 | Block diagram m for a converter-fed dc motor           | 19       |
| Figure 4.1 | Open loop transfer function for dc motor               | 23       |
| Figure 4.2 | Dc motor transfer function with PI controller          |          |
| Figure 5.1 | Step by step deviation of a dc motor transfer function |          |
| Figure 5.2 | Current control loop                                   |          |
| Figure 5.3 | Simplified current-control loop                        |          |
| Figure 5.4 | Representation of the outer speed loop in the dc motor | 30       |
|            | drive                                                  |          |
| Figure 5.5 | Flow chart of the simulation dc motor drive            | 31       |
| Figure 5.6 | Dc motor drive with feedback control                   | 32       |
| Figure 5.7 | Output speed of closed loop dc motor drive             | 32       |
| Figure 5.8 | Open loop dc motor                                     | 33       |
| Figure 5.9 | The result for simulation of the open loop dc motor    |          |
| Figure 6.1 | Speed controller schematic                             | 37       |
| Figure 6.2 | Current controller schematic                           | 38       |
| Figure 6.3 | The simulation parameter block                         |          |



| Figure 6.4  | Simulink schematic diagrams for constant loading and              | 40 |
|-------------|-------------------------------------------------------------------|----|
|             | reference speed                                                   |    |
| Figure 6.5  | Simulation result for Figure 6.4 using ( $K_p=2$ , $K_i=20$ )     | 41 |
| Figure 6.6  | Simulation result for Figure 6.4 using ( $K_p$ =30, $K_i$ =50)    | 42 |
| Figure 6.7  | Simulation result for Figure 6.4 using ( $K_p$ =100, $K_i$ =150)  | 43 |
| Figure 6.8  | Simulink schematic diagrams for constant loading and step         | 44 |
|             | reference speed with initial is 100 rad/sec and final speed is    |    |
|             | 160 rad/sec                                                       |    |
| Figure 6.9  | Simulation result for Figure 6.8 using ( $K_p=2$ , $K_i=20$ )     | 45 |
| Figure 6.10 | Simulation result for Figure 6.8 using ( $K_p$ =30, $K_i$ =50)    | 46 |
| Figure 6.11 | Simulation result for Figure 6.8 using ( $K_p$ =100, $K_i$ =150)  | 47 |
| Figure 6.12 | Simulink schematic diagram for different load torque in specified | 48 |
|             | time and step reference speed with initial speed 100 rad/sec and  |    |
|             | final speed is 160 rad/sec                                        |    |
| Figure 6.13 | Simulation result for Figure 6.12 using ( $K_p=2$ , $K_i=20$ )    | 49 |
| Figure 6,14 | Simulation result for Figure 6.12 using ( $K_p$ =30, $K_i$ =50)   | 50 |
| Figure 6.15 | Simulation result for Figure 6.12 using ( $K_p$ =100, $K_i$ =150) | 51 |
| Figure 6.16 | Simulink schematic diagram for different load torque in specified | 52 |
|             | Time and constant reference speed                                 |    |
| Figure 6.17 | Simulation result for Figure 6.16 using ( $K_p=2$ , $K_i=20$ )    | 53 |
| Figure 6.18 | Simulation result for Figure 6.16 using ( $K_p$ =30, $K_i$ =50)   | 54 |
| Figure 6.19 | Simulation result for Figure 6.16 using ( $K_p$ =100, $K_i$ =150) | 55 |
| Figure 6.20 | converter-fed dc motor drive without feedback                     | 56 |



| Figure 6.21 | Simulation result for Figure 6.20                                         | 57 |
|-------------|---------------------------------------------------------------------------|----|
| Figure 6.22 | Characteristic for a good controller                                      | 59 |
| Figure 7.1  | Output voltage and current for PI controller with $\alpha{=}80^{\circ}$   | 65 |
| Figure 7.2  | Output voltage and current for PI controller with $\alpha {=} 90^{\circ}$ | 65 |
| Figure 7.3  | Output voltage and current for PI controller with $\alpha {=} 60^{\circ}$ | 66 |
| Figure 7.4  | Output voltage and current for PI controller with $\alpha$ =71°           | 66 |
| Figure C.1  | Dc motor block parameter                                                  | 80 |
| Figure C.2  | Thyristor block parameter                                                 | 82 |
| Figure C.3  | Synchronized six pulse generator block parameter                          | 83 |
| Figure C.4  | Block parameter for current filter                                        | 86 |



### LIST OF TABLES

| Tables    |                                                      | Page No: |
|-----------|------------------------------------------------------|----------|
| Table 6.1 | Summary of effects of controller gains to the system | 61       |
|           | Response                                             |          |
| Table 7.1 | Basic setting for the PI controller                  | 63       |
| Table 7.2 | The speed with and without load using PI controller  | 65       |



# LIST OF SYMBOLS

| α                              | Delay angle                  |
|--------------------------------|------------------------------|
| Φ                              | Flux density                 |
| ſ                              | Integration                  |
| Ω                              | Ohm                          |
| ω                              | Speed                        |
| τ                              | Torque                       |
| В                              | Viscous frictional torque    |
| E <sub>a</sub> /E <sub>g</sub> | Back e.m.f voltage           |
| e(t)                           | Signal error                 |
| $f_s$                          | Frequency                    |
| H <sub>c</sub>                 | Current loop transducer gain |
| l <sub>a</sub> *               | Reference armature current   |
| la                             | Armature Current             |
| I <sub>f</sub>                 | Field current                |
| J                              | Moment of inertia            |
| K <sub>b</sub>                 | Induced e.m.f constant       |
| K <sub>c</sub>                 | Current controller gain      |
| Kı                             | Integral gain                |
| K <sub>m</sub>                 | Motor constant gain          |
| K <sub>P</sub>                 | Proportional gain            |
| Kr                             | Converter gain               |



| Ks              | Speed controller gain             |
|-----------------|-----------------------------------|
| Kt              | Torque constant                   |
| Kv              | Voltage constant                  |
| Kω              | Speed feedback gain               |
| La              | Armature Inductance               |
| L <sub>f</sub>  | Field Inductance                  |
| Ρ               | Power                             |
| Pa              | Armature Power                    |
| R <sub>a</sub>  | Armature Resistance               |
| R <sub>f</sub>  | Field Resistance                  |
| T <sub>c</sub>  | Current controller delay time     |
| Te              | Electrical torque                 |
| Ti              | Integral time                     |
| Ti              | Load torque                       |
| T <sub>m</sub>  | Mechanical torque                 |
| Tr              | Delay time of converter           |
| Ts              | Speed controller delay time       |
| $T_\omega$      | Time constant                     |
| u(t)            | Output variable                   |
| U <sub>x</sub>  | Actual voltage                    |
| Va              | Armature voltage                  |
| V <sub>ac</sub> | Reference synchronization voltage |
| Vc              | Current controller output voltage |



| V <sub>cn</sub> | Control voltage |
|-----------------|-----------------|
| V <sub>f</sub>  | Field Voltage   |
| W               | Setpoint        |
| Wmr*            | Speed feedback  |
| Wr              | Rated speed     |
| w,*             | Reference speed |
| х               | Actual value    |



### CHAPTER 1

### INTRODUCTION

### **1.1 INTRODUCTION**

Converter-fed dc motor drives are extensively used in special heavy duty application like draglines, electric trains, and steal mills where sudden change of speed or rotation is required. They are used for these applications because their speed and torque can be easily being varied without suffering in the efficiency of the machine.

The speed of dc motors changes due to the changes of load torque. To maintain a constant speed, the armature voltage should be varied continuously by varying the delay angle of ac-dc converters. Most industrial drives operate as closed-loop feedback systems because it has the advantages of improved accuracy, fast dynamics response, and reduced effects of load disturbances and system nonlinearities.

Proportional feedback control can reduce error responses to disturbances; however, it still allows a non-zero steady-state error. When the controller includes a term proportional to the integral of the error, then the steady state error can be eliminated. Here the control signal is a linear combination of the error and the time integral of the error. All the proportional gain  $K_P$  and integral gain  $K_I$  are adjustable.



This project proposed a design and simulation of converter-fed dc motor drive by using MATLAB package. The physical modeling and simulation of the converter-fed using MATLAB M-file, Simulink and SimPowerSystems are presented in Chapter 4, 5 and 6. Experimental results for this study also discussed and compared to the simulated responses.

### **1.2 OBJECTIVES OF THE PROJECT**

Direct current (dc) motors have variable characteristics and are used extensively in variable-speed drives. Dc motors can provide a high starting torque and it is also possible to obtain speed control over a wide range with good dynamics response.

The ac-dc converters also known as controlled rectifiers are generally used for the speed control of dc motors. Controlled rectifier provides a variable dc output voltage from a fixed ac voltage. The three-phase thyristor converter is usually used as ac-dc converter.

In the dc motor operation, the speed is changing due to the change in the load torque applied. When the torque is increased, the speed of the motor is decreases due to the voltage drop in the armature resistance. To maintain the constant speed of the motor, the armature voltage should be varied continuously by varying the alpha angle of a ac-dc converters. Thus, the controller must be added to control the alpha angle. The objectives of this project are:

To develop the transfer function of the dc motor with and without feedback



- To design controller with a speed feedback (closed loop feedback) using PI controller and simulate the drive under different loading and reference speed.
  - To conduct experiments to verify results with the simulated responses.

#### 1.3 PROJECT APPROACH

### 1.3.1 Data Collection and Literature Survey

All the data were collected from the journals of IEEE columns, other trusted websites, and reference books from University Malaysia Sabah (UMS) library. There were several books on DC Motors, Power Electronics and Feedback dynamic control systems, but none pertaining to simulation of dc motors in MATLAB (SimPowerSystems).

#### 1.3.2 Through Supervisor and lecturers Guidance

Supervisor gives the ideas of doing this project by understanding the MATLAB demos and does the tutorial in MATLAB help. Mr. Kenneth and Dr. G Sainarayan conduct the MATLAB simulation workshop to help students understand better in MATLAB.

### **1.4 ORGANIZATION OF THE PROJECT**

The project organized into 7 chapters and brief content of each chapter is as follows:

In chapter 2, a review on separately excited dc motor characteristic and its basic equation are presented. The converted fed open loop and closed loop also being



discussed. And, some studies of proportional plus integral controller that using this project.

In chapter 3, the methodologies that have been carried out in this project will be discussed. These include the development of transfer function and block diagram of dc motor.

Chapter 4 will cover the simulation of open loop and closed loop dc motor using the MATLAB M-file. These simulations compare the effect changing the gains of proportional integral (PI) controller to the system.

Chapter 5 is a simulation of dc motor block diagram with and without feedback by using Simulink. The same motor ratings in the previous chapter are used.

In chapter 6, a different loading, speed references and controller gains are used in the simulation using the SimPowerSystems. The controller is design to maintain the constant speed with the changing of the load torque. Effects on speed characteristics of a constant and changing load torque at a specified time are also being discussed.

Chapter 7 is the experimental results that constructed to verify the simulated responses. However, the speed characteristics of the converter-fed dc motor drive could not be observed due to the limited apparatus in the lab.

Chapter 8 is the concluding remarks on the developed module and suggestions for future research are given.



### 1.4 SUMMARY

MATLAB simulink have been proven to be effective and it is applied in many fields such as engineering, physical sciences, and economics and is gaining recognition in medicine, biomedical science, and finance. Working with MATLAB simulink helps most engineers in designing products and do research. Development of MATLAB modeling and simulation is proposed. Research problem and research methodology are also discussed in this project.



### **CHAPTER 2**

### LITERATURE REVIEW

### 2.1 INTRODUCTION

Dc motors have been in service for more than a century. Their fortune has changed a great deal since the introduction of the induction motor. There were several reasons for the continued popularity of dc motor. One was that dc power systems are still common in cars, trucks, and aircrafts. Another application for dc motor is a situation in which wide variation in speed are needed while retaining high efficiency (Stephen J. Chapman, 2005). There are five types of dc motors currently available such as follow:

- Separately excited dc motor
- Shunt dc motor
- Series dc motor
- Permanent magnet dc motor
- Compounded dc motor

Among these type of motors, the majority of industrial variable – speed drives have been designed for permanent magnet and separately excited dc motors (A.T.Alexandridis.et.al, 1998).



### REFERENCES

Arthur G.O. Mutambara. 1999. Design and analysis of control system.CRC Press.

- A.T. Alexandridis and D.P. Iracleous, "Optimal Nonlinear Firing Angle Control Of A Converter-fed Dc Drive Systems," IEE Proc-Electr, Power Appl., Vol 145, No.3, May 1998.
- B.H.Khan, Seshagiri R.Doradla and Gopal K.Dubey, "A Three-Phase Ac-dc GTO Thyristor Converter Employing Equal Pulse - Width Modulation (EPWM),"IEEE Transactions on Industry Application, Vol 27, No.2, March/April 1991.
- Charles L. Phillips and Royce D. Harbor. 2000. Control Systems. 4th Edition. Prentice Hall.

"Dc Machine" http://www.mathworks.com

"Digital Dc Motor Speed Control with PID control" http://www.engin.umich.edu

Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 1994. Feedback Control of Dynamic Systems. 3<sup>rd</sup> Edition. Addison-Wesley.

Katsuhiko Ogata. 2002. Modern Control engineering. 4th Edition. Prentice Hall.

M Gopal. 2002. Control Systems-principles and design. 3rd Edition. McGraw Hill.

M Ramamoorty. 1991. An Introduction to Thyristors and their applications. 2<sup>nd</sup> Edition. East-West Press.



Muhammad H. Rashid. 2004. Power Electronics-circuits, devices, and applications. 3<sup>rd</sup> Edition. Prentice Hall.

Paul C.Krause, Okg Wasynczuk and Scott D. Sudhoff. 2002. Analysis of electric Machinery & Drives Systems. 2<sup>nd</sup> Edition. IEEE Press and Wiley Interscience.

Stephen J. Chapman. 2005. Electric Machinery Fundamentals. 4th Edition. McGraw Hill.

- Theodore Wildi. 2006. Electrical Machines, Drives, and Power Systems. 6th Edition. Prentice Hall.
- W. Shepherd, L.N. Hulley, and D.T.W. liang. 2002. *Power Electronics and motor control*. 2<sup>nd</sup> Edition. Cambridge University Press.

