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ABSTRACT 

This dissertation focuses on Mersenne prunes, where Mersenne primes are used to 

generate the corresponding even perfect numbers. Trial-division and Lucas-Lehmer test 

are used to verify Mersenne primes. The ones digit and tens digit of Mersenne primes are 

proved by using modular arithmetic. Some patterns of Mersenne numbers are introduced 

and diagonals of Mersenne's triangle are explored. Even perfect numbers that generated 

by Mersenne primes are determined by Euclid's theorem and Euler's theorem 

respectively. The last two digits of even perfect number are proved by using division 

algorithm and modular arithmetic. Relation of Mersenne primes and even perfect number 

is studied in triangular number's form. 
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NOMBOR PERDANA MERSENNE 

ABSTRAK 

vi 

Disertasi ini memberi tumpuan terhadap nombor perdana Mersenne, di mana nombor 

perdana Mersenne dapat digunakan untuk memperolehi nombor sempuma yang genap. 

Ujian cuba-jaya dan Lucas-Lehmer digunakan untuk menentusahkan nombor perdana 

Mersenne. Digit terakbir dan kedua terakhir bagi nombor perdana Mersenne dibuktikan 

dengan menggunakan modulo aritmetik. Corak bagi nombor Mersenne telah 

diperkenalkan dan pepenjuru bagi segitiga Mersenne telah diselidik. Nombor sempuma 

yang dijanakan oleh nombor perdana Mersenne dibuktikan dengan teorem Euclid dan 

teo rem Euler masing-masing. Digit kedua terakhir bagi nombor sempuma dibuktikan 

dengan menggunakan algoritma pembahagian and modulo aritmetik. Hubungan antara 

nombor perdana Mersenne dan nombor sempurna genap dikaji dalam bentuk nombor 

segitiga. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Numbers have exercised their fascination since the dawn of civilizations. Each number 

has its own characteristics and beauties. Prime numbers are the basic building blocks of 

mathematical world. Every natural number except one is either prime or is made up of 

primes multiplied together. 

In this research, Mersenne numbers which are one of the forms of prime numbers 

will be studied. An integer p> 1 is said to be prime if the only positive divisors of p are 

one and p itself. Mersenne numbers have played an important role in computational 

number theory. At first, Mersenne investigated prime numbers and he tried to fmd a 

formula that would represent all prime numbers. Although he failed in this, he found out 

that his work on the numbers (2 p - 1), where p is prime, can be used to represent large 

primes. 
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This study shall be focused on Mersenne primes, which is a special type of prime 

numbers. A Mersenne prime number is a prime number that happens to be a Mersenne 

number. 

A Mersenne prime will always have a value equal to (2 p -1) where p is one of a 

selected list of positive prime numbers. Mersenne primes will be tested by using the 

primality test for Mersenne numbers. 

There are many people searching for Mersenne primes but not many people 

interested in doing research about the characteristics of Mer senne primes. There are many 

great explorations about Mersenne primes. Therefore, in this study, observations on the 

characteristics of Mersenne primes such as the patterns of numbers shall be focused. 

Besides, some patterns of Mersenne numbers shall be studied in this research. 

Besides, this study will concentrate on using the Mersenne primes to obtain 

perfect numbers or more specifically even perfect numbers. Odd perfect numbers are 

different matters. It is not known whether the odd perfect numbers exist or not. 

Mathematicians have not been able to prove that none exist so far. Moreover, the patterns 

of even perfect numbers generated by Mersenne primes shall be studied. 

Before going deeper in this study, it is important to review some historical facts 

about Mersenne numbers. The objectives of this study will be highlighted as the goal for 

this research. 
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1.2 Biography of Marin Mersenne 

Marin Mersenne was a 17th century mathematician, who studied the Mersenne numbers. 

He was born on September 8, 1588 in Maine, France. Mersenne received education at the 

Colleges of Mans and the Jesuit College of La Fleche. He studied theology at Sorbonne 

University for two years. After that, he taught philosophy at Minim Convent in Nevers 

between 1614 and 1618. In 1619, he returned to Paris and remained in Minims de 

l'Annociade near Palace Royale for the rest of his life (Rosen, 2000). 

Father Marin Mersenne had been gathered the scientists, mathematicians and 

philosophers to discuss about their respective discoveries or ideas. Mersenne had many 

meetings in his cell in Minim Convent with Pascal, Fermat and other unknown 

mathematicians from 1635 until his death in 1648. After Mersenne's death, they 

continued their discussions at private houses in Paris, including Pascal's. 

From 1625 onwards, Mersenne made his efforts in bringing mathematical and 

scientific information. It was Mersenne who made widely known that the physicist's 

demonstration of atmospheric pressure through the rising of a column of mercury in a 

vacuum tube followed his visit to Torricelli in Italy in 1645. 

Marin Mersenne also became the main channel of communications between 

Fermat, Frenicle and Descartes. They kept exchanging letters and had determined the 

kind of problems they chose to investigate. In a letter written in 1643, Mersenne 
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requested Fermat to found out the factors of number 100,895,598,169. Fermat had solved 

the problem and the two primes were 898423 and 112303. 

Mersenne had published several books of mathematical sciences including 

Synopsis Malhemalica (1626), Traite de /'Harmonie Universe lie (1636-37) and 

Universae Geometriae Synopsis (1644). He was actively in popularizing Galileo's 

investigations. In 1634, he bought out a version of Galileo's Discorsi under the title Les 

Mecaniques de Galilee. A year after its original publication, Mersenne did translations for 

Galileo's Discorsi - a treatise analyzing projectile motion and gravitational acceleration 

into French in 1639. Mersenne's greatest contribution to scientific movement was his 

rejection ofthe traditional interpretation to natural phenomena (Burton, 2006). 

1.3 History of Mersenne Numbers 

Mersenne conjectured that number of the form 2P -1 is prime for the value of p that is 

prime (Brown, 1978). However, in 1536 Hudalrichus Regius found that it fails when p is 

11 , the number 2 II -1 = 2047 = 23·89. It was not a Mersenne prime number as it 

contained two prime factors, which were 23 and 89, as stated in his work entitled 

Ulriusque ArilhmeLices. 

By 1588, Pietro Cataldi had verified that 217 -1 and 2 19 -1 were primes, but he also 

stated that 2P -1 was also prime for 23, 29, 31 and 37 without giving a proof. In 1640, 

Fermat showed Cataldi was wrong about 23 and 37. Later in 1738, Euler showed Cataldi 
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was wrong about 29. In 1772, Leonard Euler showed Cataldi ' s assertion about 31 was 

correct. He ascertained that 2 31-1 = 2,147,483 ,647 is a prime number by using trial 

division (Burton, 2006). 

In 1644, Father Marin Mersenne stated in his Cognitata Physica-Mathematica 

(without a proof) that the numbers 2 P -1 were prime for p = 2,3, 5, 7, 13, 17, 19, 31 , 67, 

127 and 257 and were composite for all other positive integers p < 257 (Rosen, 2000). No 

one knew how he arrived at this claim. 

The Mersenne numbers are composite for the following primes like 257 = 2 8 + 1, 

1021 = 2 10 _3 , 67 = 2 6 +3 and 8191 = 2 13 _1. Over the years, it had been found that 

Mersenne was wrong about five of the primes less than or equal to 257. He stated two 

primes that did not lead to a prime, 67 and 257. He also missed three that did, 61 , 89, and 

107 (Uhler, 1948). It took about three centuries to settle his claim. 

In 1876, Edouard Lucas verified that 21 27 -1 was a prime number. This number is, 

written in full , is 170, 141 , 183, 460, 469, 231 , 731 , 687, 303, 715 , 884, 105, 727 and 

contains 39 digits (Lines, 1986). He doubted this result but it was confinned by 

Fauquernbergue in 1914. It was the largest prime to be discovered without the aids of 

modern calculating. 

In 1883, Pervushin showed that 2 61-1 was prime. In the early 1900' s Powers 

found that Mersenne had missed the primes 2 89 - 1 and 2 107 - 1 (Ondreika, 1986). By 
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1947, Mersenne's range, p < 257, had been completely checked. It was determined that 

the correct list is given by p = 2, 3, 5, 7, 13,17, 19, 31 , 61,89,107 and 127. 

Uhler also contributed in seeking Mersenne numbers. On 2ih November of 1947, 

Uhler finished investigating, by application of the Lucasian sequences four, 14, 194, 

37634, .. . , the factorizability of Mersenne' s number M 193 = 2 193 _1 = 12554203470773 

36152 7671578846415332832204710888928069025791. The 192nd residue had the 

value 542 45701 25193 90814 13211 43009 56802 04633 04970 79432 42801 51282 

which, being non-zero, shows that M 193 is composite (Uhler, 1948). 

1.4 Study Objcctivcs 

The main objectives of this study are: 

1. To Understand Merscnne Numbers 

Besides investigating the characteristics of Mersenne primes including its patterns 

of numbers, some patterns of Mersenne numbers shall be studied. 

2. To Verify Mersenne Primes by Using the Primality Tests of Mersenne 

Numbers 

This study will focus on using two primality test in testing Mersenne primes, 

which consists of trial division and Lucas-Lehmer test. 
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3. To Use Mersenne Primes to Generate Perfect Numbers or More SpecificaUy 

Even Perfect Numbers 

Based on this objective, perfect numbers generated by Mersenne primes shall be 

determined by using Euclid's theorem and Euler's theorem respectively. 

4. To See the Patterns of Even Perfect Numbers Generated by Mersenne Primes 

It is known that perfect numbers end with either six or eight. This study will focus 

on other patterns of perfect numbers generated by Mersenne primes. 

1.5 Study Scope 

There are many ways in determining prime numbers. However, this research only focuses 

in studying Mersenne numbers, especially where the Mersenne primes are used to 

generate even perfect numbers. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this section, the process of people searching for Mersenne primes, which can be said as 

a centuries-old research shall be focused. It can be divided into three categories: before 

the advent of electronic computers, after the advent of electronic computers and Great 

Internet Mersenne Prime Search (GIMPS). From the Table 2.1 , it shows the list of 

Mersenne primes and it will be used to discuss the characteristics of Mersenne primes in 

the latter chapter. (For Table 2.1, please refer to Appendix A, page 113). Reasons that 

motivate people in seeking Mersenne primes will be discussed in view of the applications 

of Mersenne numbers in the areas of computer or computational sciences, mathematics 

and engineering. Some historical facts about perfect numbers shall be reviewed in order 

to get know about the relation between Mersenne primes and even perfect numbers. 
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2.2 History in Searching for Mersenne Primes 

2.2.1 Before the Introduction of Electronic Computers 

Before the advent of electronic computers, the search for Mersenne primes was full with 

calculation errors as it involved large prime numbers. Pietro Cataldi proved that the 

Mersenne prime generated by p = 17 and 19, denoted by M 17 = 131071 and M ,9 =524289 

were primes in 1588. He made assertions that M p were primes for p = 23,29,31, and 37 

but only M 31 was correct. In 1644, Marin Mersenne stated (without proving) in his 

Cogni/a Physica-Mathematica that M p were primes for p = 2, 3, 5, 7, 13, 17, 19, 31 , 67, 

127 and 257 and were composite for all other positive integers p < 127 (Rosen, 2000). 

In 1772, it was Euler who proved that M 31 = 2147483647 was prime. By that time, 

only eight Mersenne primes had been found (Rosen, 2000). In 1876, with the introduction 

of the use of electronic hand calculators, Lucas had managed to get the 12th Mersenne 

prime that was MI27 which consisted of 39 digits. It was disappointing that none of the 

Mersenne prime was being found since then. At the same year, Lucas initiated a theory 

about the test for the primality of Mersenne numbers and Lehmer had used the theory to 

make it into a simple test in 1930. The test was computed by using the modular of the 

numbers (2 P
- ' ). Using the test and calculators, several Mersenne primes were added to 

the list of Mersenne primes (Spencer, 1989). 
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In 1876, Edouard Lucas stated that M 67 was composite using the test he had 

proposed without providing a factorization. After 27 years, an American mathematician 

Frank Nelson Cole succeeded in fmding the factors of M 67 , that is M 67 = 193,707,721 

· 761,838,257,287 and he presented this result on a paper with unassuming title "On the 

Factorization of Large Numbers" at a meeting of the American Mathematical Society in 

the October of 1903. Between 1876 and 1947, the numbers M6 1 , M 89 , M I07 and M127 

were proved to be primes (Rosen, 2000). 

The primality tests for all primes, p < 257 was done in 1947 with the aid of 

mechanical calculating machines. The correct list for the Mersenne primes were numbers 

generated by p = 2, 3, 5,7, 13, 17, 19,31 , 61 89, 107 and 127. Mersenne made five 

mistakes as he included wrongly p = 67 and 257 into the list and he did not include p = 61 , 

89 and 107 (p = 67 or 257 results in composites and p equal to 61 , 89 or 107 results in 

primes) (Ribenboim, 1996). Only twelve Mersenne primes had been discovered before 

the advent of modem computers, the last was M I07 which was found by Powers in 1914. 

2.2.2 After the Introduction of Electronic Computers 

Since the advent of computers, it provides a more efficient way in seeking Mersenne 

primes. There are many Mersenne primes have been discovered in a fairly steady rate. 
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In 1952, Raphael Robinson had discovered five Mersenne primes from the 13th 

M p to 1701 M p using SWAC (the National Bureau of Standards Western Automatic 

Computer) with the help of D.H and Emma Lehmer. The Mersenne primes were M 521 , 

M607 , M 1279 , M 2203 and M 228 1 • The thirteenth and fourteenth Mersenne prime numbers 

were found in 30th January, which was the first day Raphael Robinson ran the electronic 

computer (SWAC) using the Lucas-Lehmer test while the other three were discovered in 

the following nine months (Rosen, 2000). 

In 1957, Riesel discovered the 18th M p with the help of Swedish's first electronic 

computer, the BESK (Binary Electronic Sequence Calculator). Hurwitz found the 19th 

M p and 20th M p which consisted of 350484991 and 608580607 decimal digits 

respectively in 1961 using the IBM 7090. In 1963, it was Donald B. Gillies of the 

University of Illinois who discovered the 21 5t M p' 22nd M p and 23 rd M p using the 

ILLIAC 2. The twenty-third Mersenne prime was being advertised on the university' s 

postage meter as "211213 -1 is prime" (Koshy, 2002). 

Bryant Tuckerman of International Business Machines (IBM) found the 24th 

Mersenne prime, 21 9937 -1 , with the help of an IBM System 360/91. It has 6,002 digits, 

which begins and ends 4315424797 .. . 0968041471 (Tuckerman, 1971). 

In 1978, two high school students Laura Nickel and Landon Noll discovered the 

25th M p using a Control Data Cyber 174 computer at California State University, 
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