REMOVAL OF PHOSPHATES IN WASTEWATER VIA PRECIPITATION: SOME ASPECTS OF MODIFICATION, CHARACTERISATION AND OPTIMISATION

PANG WUI YING

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2007

UNIVERSITI MALAYSIA SABAH

BORANG PENG	GESAHAN STATUS TESIS
	TES IN WASTEWATER VIA PRECIPITATION: ODIFICATION, CHARACTERISATION AND
SESI PENGAJIAN: 2004 - 2007	
perpustakaan UNIVERSITI MALAYSIA berikut:	membenarkan tesis sarjana ini disimpan di SABAH dengan syarat-syarat kegunaan seperti PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH
 Tesis adalah hak milik UNIVERS Perpustakaan UNIVERSITI MAL tujuan pengajian saya. 	SITI MALAYSIA SABAH. AYSIA SABAH dibenarkan membuat salinan untuk
 Perpustakaan dibenarkan me antara Institusi pengajian tinggi 	mbuat salinan tesis ini sebagai bahan pertukaran i.
4. TIDAK TERHAD.	
Y	Disahkan oleh
Penulis: PANG WUI YING	TANDATANGAN PUSTAKAWAN Tarikh:
Alamat: Peti Surat 3566,	Juleque
90740 Sandakan, Sabah.	Penyelia: Prof. Dr. Mohd. Harun Abdullah Tarikh: 16 Julai 200
Tarikh: 2007	

CATATAN: Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana Secara Penyelidikan atau disertassi bagi pengajian secara Kerja Kursus dan Penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

I hereby declare that the material in this thesis is my own except for quotations, excerpts, summaries and references, which have been duly acknowledged.

PANG WUI YING PS04 - 001- 0046

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

23 NOVEMBER 2006

CONFIRMATION

NAME : PANG WUI YING

MATRIC NO. : PS04 - 001 - 0046

TITLE : REMOVAL OF PHOSPHATES IN WASTEWATER VIA PRECIPITATION: SOME ASPECTS OF MODIFICATION, CHARACTERISATION AND OPTIMISATION

DEGREE : MASTER OF SCIENCE

VIVA DATE : 06 AUGUST 2007

DECLARED BY

1. SUPERVISOR Professor Dr. Mohd. Harun Abdullah

INIVERS

Uleaper

ACKNOWLEDGEMENT

Before this project can be done completely, many challenges have to be overcome. Nevertheless, with God's help and other parties' co-operation, this dissertation is finally produced.

I would like to take this opportunity to express my gratefulness to my main supervisor, Associate Professor Dr. Mohd. Harun Abdullah and my co-supervisor, Associate Professor Dr. Miroslav Radojevic for their invaluable advice, suggestion and guidance. Not forgotten thanks to Associate Professor Dr. Tariq Ahmad Shabbir, for his help in this research during his stay in UMS. Their supports and helps will always be appreciated.

Puan Dayang, who was always ready to help me in providing materials and apparatus set up in the laboratory.

Lastly but not the least, thanks to my family and friend, Miss Janet Seah for their fullest support.

ABSTRACT

REMOVAL OF PHOSPHATE IN WASTEWATER VIA PRECIPITATION: SOME ASPECTS OF MODIFICATION, CHARACTERISATION AND OPTIMISATION

Phosphorus and nitrate are major limiting nutrients for algal bloom. When algae decomposes in water systems, biochemical oxygen demand (BOD) would increase and cause other living organisms to be lacking in oxygen. Although phosphate compounds are less used in detergents or other washing agents, it is still widely used in agriculture as a source of fertilizer and its negative effects on the environment are significant. Removal of phosphate and nitrate from wastewaters with conventional ways by using alum, lime and iron will result in producing the precipitated phosphorus and nitrate-bearing salts sludge as waste products that were expensive to handle and transport. However, there is a different approach of removal by precipitating phosphate and nitrate into struvite, MgNH₄PO₄.6H₂O. Struvite can then perhaps be applied as slow fertilizers, raw materials for phosphate industry, also in the making of fire resistant panels and as binding material in cements. Experiments to investigate conditions and parameters that influence the precipitation of struvite are conducted in this research. Molar concentration ratio of 1: 1: 1 with respect to Mg²⁺, NH₄⁺ and PO₄³⁻ stoichiometric concentrations and at pH values of more than 8 were found to have caused an increase in crystal yield. Ratio of Mg²⁺ to the other ions should be at least 1.50 as this ion is an important limiting factor to produce the precipitate. Fe2+ ions caused failures in producing struvite as this ion competed with other ions to form iron complexes. Besides all these parameters (molar concentration, pH, excess of Mg2+ ions, Fe2+ concentration and degree of supersaturation), conditions such as mixing (by stirring the solution with magnetic stirrer) in batch-scale experiments, proved to be indispensable in producing a significant struvite yield. Recycling, in this context means that struvite can be a source of raw material to replace phosphate mining from phosphate rocks and be a renewable nutrient source in the agriculture industry.

ABSTRAK

Fosforus dan nitrat adalah nutrient utama bagi pertumbuhan alga. Apabila alga mengurai dalam sistem air, permintaan biokimia oksigen (BOD) akan meningkat dan menyebabkan hidupan organisma lain kekurangan oksigen. Walaupun sebatian fosfat semakin kurang digunakan dalam detergen atau bahan pencuci lain, namun ia masih digunakan secara meluas dalam bidang pertanian sebagai sumber baja. Maka, kesan ke atas alam sekitar adalah signifikan. Penyingkiran fosfat dan nitrat dari air buangan melalui kaedah lama dengan aluminium sulfat, kalsium hidroksida dan ferum akan menghasilkan lumpur yang dimendakkan oleh garam fosforus dan nitrat sebagai bahan buangan yang mahal untuk dikendali dan diangkut. Walau bagaimanapun, terdapat satu pendekatan penyingkiran yang berbeza iaitu memendakkan fosfat dan nitrat kepada struvit, MgNH4PO4.6H2O. Struvit boleh digunakan sebagai baja, bahan mentah bagi industri fosfat, panel penghadang api dan bahan melekat dalam simen. Eksperimen untuk mengkaji keadaan dan parameter yang mempengaruhi pemendakan struvit dijalankan. Nisbah nilai kepekatan molar 1:1:1 bagi Mg²⁺, NH₄⁺ dan PO₄³⁻ secara stoikiometri dan pada nilai pH yang lebih daripada 8 boleh meningkatkan perolehan hablur. Nisbah Ma2+ kepada ion lain perlu bernilai sekurang-kurangnya 1.50 kerana ion Mg²⁺ adalah suatu faktor penghad untuk menghasilkan mendakan. Ion Fe²⁺ menghalang penghasilan struvit kerana ion ini bersaing dengan ion lain untuk membentuk kompleks besi. Selain parameter-parameter tersebut (kepekatan molar, Fe2+ dan darjah ketepuan), keadaan seperti pencampuran (kacau larutan dengan pengacau magnet) dalam eksperimen telah dibuktikan sebagai faktor yang mustahak untuk menghasilkan struvit. Kitaran semula dalam konteks ini bermaksud struvit boleh dijadikan bahan mentah untuk menggantikan penggalian fosfat dari batuan fosfat dan sebagai sumber nutrien yang boleh diperbaharui dalam industri pertanian.

CONTENT

Page

TITLE DECLARATION CONFIRMATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK CONTENT LIST OF FIGURES LIST OF TABLES ABBREVIATION SYMBOLS	i iii iv v vi vii xi xiii xvi
CHAPTER 1: INTRODUCTION	
1.1 ROLE AND IMPORTANCE OF PHOSPHORUS IN POLLUTION PHENOMENA	1
1.2 OBJECTIVES	6 7 7
1.3 SCOPE OF STUDY	-
1.4 DEFINING THE PROBLEM	-
1.5 LIMITATION	8
1.6 JUSTIFICATION	8
CHAPTER 2: LITERATURE REVIEW	
2.1. PHOSPHORUS CYCLE	10
2.1.1 Atmosphere	15
2.1.2 Biosphere	17
2.1.3 Hydrosphere	18
2.1.4 Pedosphere	21
2.2. PHOSPHORUS CHEMISTRY	22
2.2.1 The Orthophosphate Ion	22 24
2.2.2 Phosphorus Compounds	
2.2.3 Microbial Transformations of Phosphorus	26
2.3. METHODS FOR THE EXAMINATION OF HOSPHORUS IN WASTEWATER	26 26
2.3.1 Digestion Methods	26
2.3.2 Colorimetric Methods	
2.4. COLORIMETRIC ANALYSIS	27 28
2.4.1 Ultraviolet and Visible Spectrometry	28
2.4.2 Quantification	20
2.5. PHYSICO-CHEMICAL TREATMENT OF MUNICIPAL WASTEWATER AND WASTEWATER TREATMENT	28
2.6. MECHANISMS FOR CHEMICAL/PHYSICAL PHOSPHORUS REMOVAL	30
2.6.1 Chemical Treatment: Phosphorus Precipitation	31
2.6.2 Lime Treatment	35

	2.6.3 Alum Treatment		37
	2.6.4 Sodium Aluminate Treatment		38
	2.6.5 Ferric Chloride (Fe ³⁺ Dephosphorizatio	(nc	39
	2.6.6 Coagulation	,	44
	2.6.7 Hydrophilic/hydrophobic		44
	2.6.8 Zeta Potential		45
	2.0.8 Zeta Potentia		
2.7.	BASIC CONCEPTS FROM EQUILIBRIUM CHEM	AISTRY	45
	2.7.1 Limitations of Equilibrium Calculations	5	46
	2.7.2 Equilibrium and Le Chatelier's Princip	le	47
	2.7.3 Common Ion Effect		48
	2.7.4 Diverse Ion Effect		49
	2.7.5 Ways of Shifting Chemical Equilibria		50
	2.7.6 Formation of Insoluble Substance		51
	2.7.7 Formation of Complex Ion		51
	2.7.8 Activity and Activity Coefficient		51
	2.7.9 Solubility Product and Conditional So	lubility Product	53
	2.7.10 Computer Methods For Solving Equi	ilibria Problems	55
2.8.	STRUVITE FORMATION		55
	2.8.1 Impact of Struvite Formation On Pipe	S	56
	2.8.2 Advantages of Struvite		56
	2.8.3 Chemical Principles of Struvite Precipi	itation; Struvite Solubility	57
	2.8.4 Effect of pH and pH Adjustment	and the second second second	59
	2.8.5 Effect of Concentrations		60
	2.8.6 Effect of Temperature		63
	2.8.7 Effect of Foreign Ion		63
	2.8.8 Sources of Struvite Components		65
	a. Phosphorus		65
	b. Ammonium		65
	c. Magnesium		65
	2.8.9 Struvite Precipitation		66
	a. Scale Formation		67
	b. Struvite Control		68
	c. Struvite Recovery		69
	C. Su uvite Recovery		20
2.9	PREVIOUS STUDIES OF STRUVITE		70
~	CUMMARY		71
2.10) SUMMARY		
	APTER 3: METHODOLOG		73
		1	73
3.1	QUALITATIVE ANALYSIS	OFUS	74
	3.1.1 Colorimetric Determination of Phosph	NIUS (Ammonia) By Dhonata My	
	3.1.2 Colorimetric Determination of Nitroge	tion Into An Air Acobiono El	amo 76
	3.1.3 Determination of Mg By Direct Aspira	nion into an Air-Acetylene Fi	Flame 77
	3.1.4 Determination of Iron By Direct Aspir	auon into an air-acetylene i	ame //
2.2	PARAMETERS AND CONDITIONS THAT INF	UENCE THE PRECIPITATIO	NOF

3.2 PARAMETERS AND CONDITIONS THAT INFLUENCE THE MAGNESIUM AMMONIUM PHOSPHATE

79

3.2.1 Effect of Molar Ratio of Mg ²⁺ :NH ₄ ⁺ :PO ₄ ³⁻	79
a. Identification of Struvite	80
b. (i) Dissolution	80
(ii) Identification For Mg ²⁺ Ion	81
(iii) Identification of NH_4^+ Ion	81
3.2.2 Effect of pH Value On Formation of Struvite	81
a. MINTEQA2 calculation	81
b. Experiment	82
3.2.3 Impact of Foreign Ion (Ferrous Salt)	82
	83
a. MINTEQA2 Calculation b. Experiment	83
3.2.4 Effect of Excess of Struvite's Constituent Ions	84
a. MINTEQA2 Calculation	84
b. Experiment	84
3.2.5 Degree of Supersaturation	85
a. Evaluation by MINTEQA2 (Theoretical concentration)	87
b. Measured concentration evaluation	87
	IVSIS
3.3 PREDICTING STRUVITE FORMATION IN SAMPLE OF WASTEWATER ANA	88
CHAPTER 4: RESULTS AND DISCUSSION	90 N OF
4.1 PARAMETERS AND CONDITIONS THAT INFLUENCE THE PRECIPITATION	90
MgNH ₄ PO ₄	90
4.1.1 Effect of Molar Ratio of Mg ²⁺ :NH ₄ ⁺ :PO ₄ ³⁻	92
a. Identification of Struvite	92
b. Inference	93
4.1.2 Effect of pH Value On The Formation of Struvite	93
a. MINTEQA2 Calculation	100
b. Experimental Results	103
4.1.3 Impact of Foreign Ion	103
a. MINTEQA2 Calculation	110
 b. Experimental Results 4.1.4 Effect of Excess of Struvite's Constituent Ions 	113
4.1.4 Effect of Excess of Suluvite's constituent tons	113
a. Excess of Mg ²⁺ ion	114
b. Excess of NH ₄ ⁺ ion	114
c. Excess of PO ₄ ³⁻ ion	116
4.1.5 Degree of Supersaturation a. MINTEQA2 Calculation	116
b. Calculation of Supersaturation of measured concentration	121
	126
4.2 PREDICTING STRUVITE FORMATION IN SAMPLE OF WASTEWATER	120
4.2.1 Sampling of wastewater and analysis	120
a. Effect of Molar Ratio	127
b. Effect of pH	127
c. Effect of Excess Mg ²⁺	120
d. Effect of Mixing Energy	129

CHAPTER 5:	CONCLUSIONS AND RECOMMENDATIONS	130
5.1 CONCLUSIONS		130
5.2 RECOMMENDATIO	ONS	132
REFERENCES		133
GLOSSARY		137
APPENDIX		139

LIST OF FIGURES

PAGE

Figure 2.1	Annual average TP loads reaching the coastlines	14
Figure 2.2	Fluxes involving atmospheric phosphorus	16
Figure 2.3	Vertical sections of phosphates in different ocean basins. Older water masses in the Pacific and Indian Ocean are generally more enriched in phosphate	19
Figure 2.4	Dissolution, precipitation and absorption of the weathered phosphate rock	21
Figure 2.5	Phosphorus anhydride molecule, P ₂ O ₅	22
Figure 2.6	pH-dependent variation of phosphorus speciation	23
Figure 2.7	Geometric shape for PO ₄ ³⁻ ion	24
Figure 2.8	Spatial geometry of the PO ₄ ³⁻ ion	24
Figure 2.9	Comparison of dephosphorization using Ca^{2+} , Fe^{3+} and Al^{3+} cations	34
Figure 2.10	Typical phosphorus removal curve with an influent phosphorus concentration of 10 mg/L as P assumed	36
Figure 2.11	Change in total dissolved phosphorus concentration (P_{T2}) and the residual phosphorus present at the beginning of Fe(OH) ₃ precipitation (P_{T1})	41
Figure 2.12	Curve describing Na_2HPO_4 precipitation with FeCl ₃ . Initial concentration for both reagents was N/100. Residual amount determined after 30 min of decantation	42
Figure 2.13	Comparison of dephosphorization results obtained by addition of a ferric salt and by in situ oxidation of Fe ²⁺ ions	43
Figure 4.1	Removal of PO_4^{3-} for molar ratio of 1 with different pH values	101
Figure 4.2	Removal of PO_4^{3-} for molar ratio of 3 with different pH values	102
Figure 4.3	Removal of PO_4^{3-} in the presence of Fe^{2+} for molar ratio of 1 with different pH values	111

LIST OF FIGURES

	-	-
PΔ	G	F

Figure 4.4	Removal of PO_4^{3-} in the presence of Fe^{2+} for molar ratio of 3 with different pH values	112
Figure 4.4	Effect of excess of any struvite's constituent ions for molar ratio of 1 (The ratio arrangement is in the order of $Mg^{2+}:NH_4^+:PO_4^{3-}$)	115
Figure 4.4	Effect of excess of any struvite's constituent ions for molar ratio of 3 (The ratio arrangement is in the order of $Mg^{2+}:NH_4^+:PO_4^{3-}$)	115

LIST OF TABLES

Table 1.1	Amount of phosphorus from various sources (per person- equivalent)	2
Table 1.2	Sources of phosphorus pollution in France	3
Table 1.3	Design criteria for 80 to 90 % suspended solid removal from raw municipal wastewater by chemical treatment	7
Table 2.1	Amount of fertilizers required to compensate for nutrient removal and immobilization in the oil palm	11
Table 2.2	Type of standard pollutants characterization in urban runoff for Malaysia	12
Table 2.3	Type and source of pollutants in Malaysia, 2002 (Value in mg/L)	13
Table 2.4	Total loads entering coastal waters around Sabah (Borneo, Malaysia) for all scenarios; value in brackets represent percentage increase/decrease compared to existing conditions	14
Table 2.5	Summary of phosphorus fluxes on a global scale	18
Table 2.6	Percentage of phosphate species in various pH values	20
Table 2.7	Various equilibrium constants	32
Table 2.8	Solubility of aluminium phosphate versus pH	38
Table 2.9	Various K_{sp} values of struvite from various authors	60
Table 2.10	Series of equilibria equations	61
Table 2.11	Equilibrium constants for various species of iron	65
Table 2.12	Comparison of induction time in static and mixed systems	67
Table 2.13	Design criteria for 80 to 90 % suspended solid removal from raw municipal wastewater by chemical treatment	69

LIST OF TABLES

PAGE

Table 3.1	Summary of conditions for prediction of struvite precipitation from wastewater sample	89
Table 4.1	Phosphate removal for molar ratio of 1	90
Table 4.2	Phosphate removal for molar ratio of 3	91
Table 4.3	Test to confirm the presence of Mg^{2+} and NH_4^+ ions	92
Table 4.4	Concentration of molar ratio 3 : 3 : 3 for Mg^{2+} , NH_4^+ and PO_4^{3-} respectively (pH>7)	93
Table 4.5	Concentration of molar ratio 3 : 3 : 3 for Mg^{2+} , NH_4^+ and PO_4^{3-} respectively (pH<7)	97
Table 4.6	Degree of supersaturation calculated by MINTEQA2	99
Table 4.7	Removal efficiency at lower pH values (pH<7) with molar ratio of 1 $$	100
Table 4.8	Removal efficiency at higher pH values (pH>7) with molar ratio of 1	100
Table 4.9	Removal efficiency at lower pH values (pH<7) with molar ratio of 3	101
Table 4.10	Removal efficiency at higher pH values (pH>7) with molar ratio of 3	102
Table 4.11	Molar ratio of $Mg^{2+}:NH_4^+:PO_4^{3-}:Fe^{2+} = 1:1:1:1$	103
Table 4.12	Molar ratio of $Mg^{2+}:NH_4^+:PO_4^{3-}:Fe^{2+} = 3:3:3:1$	106
Table 4.13	Result of MINTEQA2 calculation in the presence of iron ion	109
Table 4.14	Removal efficiency at higher pH values (pH>7) with molar ratio of 1	110
Table 4.15	Removal efficiency at lower pH values (pH<7) with molar ratio of 1	111

LIST OF TABLES

PAGE

Table 4.16	Removal efficiency at higher pH values (pH>7) with molar ratio of 3 $$	112
Table 4.17	Removal efficiency at lower pH values (pH<7) with molar ratio of 3	112
Table 4.18(i) - (ii)	Excess of Mg ²⁺ ion	113
Table 4.18(iii) - (iv)) Excess of NH4 ⁺ ion	114
Table 4.18 (v) -(vi)	Excess of PO ₄ ³⁻ ion	114
Table 4.19	Ratio of $Mg^{2+}:NH_4^+:PO_4^{3-}:Fe^{2+}$ and degree of supersaturation to predict whether precipitation will occur	116
Table 4.20	Molar ratio of $Mg^{2+}:NH_4^+:PO_4^{3-} = 1:1:1$	118
Table 4.21(a) –(h)	Calculation of supersaturation of measured concentration	121
Table 4.22	Values of degree of supersaturation by measured concentration calculation	125
Table 4.23	Concentrations of struvite's constituents from Likas septic tank	126
Table 4.24	Conditions for the experiments on wastewater	127
Table 4.25 (a)	Molar ratio of 2 that were added into the wastewater with excess of ${\rm Mg}^{\rm 2+}$	128
Table 4.25 (b)	Molar ratio of 2 that were added into the wastewater without excess of ${\rm Mg}^{2+}$	128

ABBREVIATION

- BOD Biochemical oxygen demand
- C_i Initial concentration
- C_f Final concentration
- pH_i Initial pH value
- pH_f Final pH value
- Ps Conditional solubility product
- Pseq Equilibrium conditional solubility product
- Tg tera gram (x 10¹²)
- Pa per acre

SYMBOLS

- a Ionization fraction
- γ Activity
- μ Ionic strength
- Ω Degree of supersaturation
- ⇔ Reversible reaction
- {} Effective concentration
- Σ Total / sum
- $C_{T/i}^{meas}$ Total measured concentration of *i*th ion
- $C_{T/i}^{theo}$ Total theoretical concentration of *i*th ion
- K_{so} Conditional solubility product

CHAPTER 1

INTRODUCTION

1.1 ROLE AND IMPORTANCE OF PHOSPHORUS IN POLLUTION PHENOMENA

One of the leading water quality issues associated with agriculture in developed countries is nutrient pollution by nitrogen and Phosphorus. Phosphate is only moderately soluble and relative to nitrate, is not very mobile in soils. However, erosion can transport considerable amounts of sediment-adsorbed phosphate to surface waters. If soils have been over-fertilized, rate of dissolved phosphorus losses in runoff will increase due to the build-up of phosphates in soil (Shortle, 2001).

Three elements — carbon, nitrogen and phosphorus — are responsible for nearly all of the pollutant compounds present in domestic or urban wastewaters. Of the three, phosphorus has proven to be particularly recalcitrant. Degradation of carbon-containing pollutants, the largest group, is well understood from a theoretical perspective, and m developed countries, the infrastructure needed for biologically treating this fraction is in place. Biological treatment processes for elimination of nitrogen-containing compounds are well developed, even though the infrastructure is not as complete. Phosphorus treatment, on the other hand, lags relatively far behind; biological removal processes are still in the developmental stage (despite the significant progress that has been made in recent years), and there is almost no infrastructure (limited to a few experimental treatment stations). Given the present state of affairs, chemical processes for phosphorus removal are still of interest for their potential efficiency and reliability, even though they are likely to be more costly than biologically based approached (Roques, 1996).

The total amount of phosphorus present in municipal wastewaters is typically of the order of 10 to 25 mg/L, 10% of which is decantable. The various sources of these compounds are (per person-equivalent) are shown as below:

Table 1.1: Amount of phosphorus from various sources (per person-equivalent) (Roques, 1996).

Per person-equivalent	
1.5 g	
0.1 g	
0.3 g	
2.1 – 2.3 g	
3.9 - 4.2 g	

Approximately 50% to 70% of wastewater phosphate compounds are in the orthophosphate form, the balance being polyphosphates and organic phosphorus compounds. For polyphosphates and organic phosphorus compounds, they can be divided into two types of compounds which Leckie and Stumm in Roques, (1996) cite:

 Insoluble or particulate compounds: bacterial and plant debris (phospholipids, phosphoproteins. nucleic acids, phosphate polysaccharides);

• Soluble compounds (glucose- 1-phosphate, ADP. mono- and hexaphosphate inositol, glycerophosphates, phosphocreatine). Polyphosphates and organic phosphorus compounds are hydrolyzed as they pass through a biological treatment plants. The phosphorus present hi the clarified effluent is 90% orthophosphate (Roques, 1996).

The heterotrophic biomass responsible for organic matter degradation has relatively limited metabolic phosphorus requirements, and in most cases, the directly; assimilable phosphorus already present in the effluent largely exceeds its needs. These requirements can be represented stoichiometrically by simple formulas for microbial biomass, for example:

C118H170O51N17P

C106H180O45N16P

that is, approximate to P ratios of 100. The difficulties encountered in biological phosphorus removal [Menar and Jenkins in Roques, (1994), estimate that approximately 2 to 3 mg/L of phosphorus is fixed and eliminated by activated sludge under normal operating conditions] result from this relatively low P requirement. A

2

means must be found to force the biomass to fix more phosphorus than it needs temporarily (or, even better, permanently) (Roques, 1996).

In a process known as eutrophication, increasing phosphorus and nitrogen levels in slow-moving waters stimulate algae growth and the resulting effects on the aquatic ecology can be dramatic. As algae bloom, they take up dissolved oxygen, depleting the oxygen available for fish and other aquatic life. They can also block sunlight needed by aquatic vegetation, causing the vegetation to die off and loss in vegetation then move up the food chain, leading to the death of fish and other aquatic life (Shortle, 2001).

Waste treatment plant effluents therefore generally contain elevated phosphorus concentrations, largely as orthophosphate, which is then discharged to surface waters, Other less easily evaluated sources of phosphorus pollution include industrial and agricultural wastes, including rainwater dissolution and runoff transport of chemical fertilizers after crop application and animal wastes (either directly or after application as fertilizer). The magnitude of fertilizer and animal waste contributions varies widely, depending on the type of soil involved, vegetation, agricultural practices, etc. Much of the phosphorus will be fixed by the soil (Roques. 1996). For example. estimated amounts for each of these sources for France are given in Table 1.2.

Millions of tons of P	
0.86	
0.34	
0.004	
0.007	

Table 1.2: Sources of phosphorus pollution in France (Roques. 1996).

Phosphorus is an essential nutrient of life, contained in protein and ATP. in many IaIes and streams, phosphorus is the limiting nutrient for algal and plant growth. An approximate formula for algae or plant matter is $C_{280}H_{560}O_{280}N_{19}P_1$. Alga require from 0.001 to 0.01 mgl⁻¹ phosphorus for growth to take place. Above about 0.5 mgl⁻¹ phosphorus is not a limitation to plant growth and algae, which along with other water plants, will often grow at an alarming rate and completely dominate a

3

body of water. Consequently, the lower portions of the plant matter will die and while decaying at the bottom of water, will use up most of the oxygen in the water. This process is referred to as eutrophication and results is fish kills and a general degradation of water quality (Greenber *et al.*, 1985).

Eutrophication, the increase in fertility and productivity of an ecosystem due to an increased rate of nutrient input, is perhaps the most pervasive impact of human activities on water bodies system. Eutrophication may be natural, due to the slow increase in fertility of a water body's watershed through geological time. Almost all cases of recent eutrophication, however, are due to human activity. Sewage discharges, organic waste discharges by industries, runoff of fertilizers from agricultural lands, and increased leaching and erosion of watersheds disturbed by farming and construction all increase nutrient inflows to water bodies. For most flesh waters, phosphorus is the limiting nutrient for primary production, and excess inputs of phosphorus the primary culprit in eutrophication due to human activity (Cox, 1997).

A 1970 report of the American Water Works association represented the overall algal growth reaction during the diurnal autotrophic cycle as

Light

 $106CO_2 + 8IH_2O + I6NO_3^{-} + HPO_4^{-2} + 18H^+ \rightarrow C_{106}H_{181}O_{45}N_{16}P + 150O_2$ (1.1)

Algal growth is accompanied by release of various metabolites. Some of these compounds are responsible for unpleasant tastes and odors, while others are haloform precursor if the water is is chlorinated for drinking purposes. In addition, phytoplankton growth can lead to biological oxygen demand (BOD) values which are much higher than the initial BOD in the untreated effluent. During maximum growth periods (summer), the algae release large quantities of oxygen (Equation 1.1) during the day and consume large quantities of oxygen at night when they convert to a heterotrophic metabolism. The resulting nocturnal reduction in dissolved oxygen can lead to large-scale fish kills due to asphyxiation. Increasing temperature and light levels in autumn cause algae to become inactive and sink to bottom, where they are decomposed by anaerobic organisms during winter. Carbon is released as CO_2 and CH_{4r} , nitrogen and phosphorus components are solubilized, and sulfur is released in the form of H_2S . The acidic CO_2 and H_2S components will dissolve sediment iron and

manganese solids, increasing the amount of Fe and Mn that will need to be removed during subsequent drinking water treatment. These processes do not generally pose a problem for running waters, since algal biomass is limited by continual export to the sea. The quality of stagnant or long-residence-time water bodies can, on the other hand, be significantly degraded, in certain instances compromising any future use for drinking water or industrial purposes (Roques, 1996).

From a mass balance perspective, eutrophication can be considered as a transitory state during which nutrient input either momentarily or permanently exceeds output. The mass balances in these cases must therefore include matter which is exchanged with the gas phase (atmosphere) or eliminated in the form of a solid. Phosphorus occurs in natural waters and in wastewaters almost solely as phosphates. These are classified as orthophosphates, condensed phosphates (pyro-, meta-, and other polyphosphates) and organically bound phosphates. They occur in solution, iii particles or detritus, or in the bodies of aquatic organisms (Greenberg *et al.*, 1985).

These forms of phosphate arise from a variety of sources. Small amounts of certain condensed phosphates are added to some water supplies during treatment. Larger quantities of the same compounds may be added when water is used for laundering or other cleaning, because these materials are major constituents of many commercial cleaning preparations. Phosphates are ale used extensively in the treatment of boiler waters. Orthophosphates applied to agricultural or residential cultivated land as fertilizers are carried into surface waters with storm runoff and to a lesser extent with melting snow. Organic phosphates are formed primarily by biological processes. They are contributed to sewage by body wastes and food residues and also may be formed from orthophosphates in biological treatment processes or by receiving water biota. Phosphorus is essential to the growth of organisms and can be the nutrient that limits the primary productivity of a body of water. In instances where phosphate is a growth-limiting nutrient, the discharge of raw phosphate or treated wastewater, agricultural drainage, or certain industrial wastes to that water may stimulate the growth of photosynthetic aquatic micro- and macroorganisms in nuisance quantities (Greenberg at al., 1985).

5

The plankton are composed of plants, phytoplankton are predominantly algae and cyanobacteria, and since they are chlorophyll-bearing organisms, their growth is influenced greatly by the amount of the fertilizing elements nitrogen and phosphorus in the water. Research has shown that nitrogen and phosphorus are both essential for the growth of algae and cyanobacteria and that limitation in amounts of these elements is usually the factor that controls their rate of growth, Experience has shown that such blooms do not occur when nitrogen or phosphorus or both are present in very limited amounts. The critical level for the inorganic phosphorus has been established as somewhere near 0.005 mg/L or 5 μ g/L under summer growing conditions (Sawyer *et al.*, 2003).

Domestic wastewater is relatively rich in phosphorus compounds. Prior to the development of synthetic detergents, the content of inorganic phosphorus usually ranged from 2 to 3 mg/L and organic forms varied from 0.5 to 1.0 mg/L. Most of the inorganic phosphorus was contributed by human wastes as a result of the metabolic breakdown of proteins and elimination of the liberated phosphates in the urine. The amount of phosphorus released is a function of protein intake and, for the average person in the United States, this release is considered to be about 1.5 g /day (Sawyer *et al.*, 9994).

Algal blooms occurring near coral reefs can affect corals by preventing the penetration of sunlight, which is essential for the coral growth. Excessive phosphorus also weakens corel skeleton making corals more susceptible to physical damage (Adnan *et al.*, 2003).

1.2 OBJECTIVES

 To develop a method to remove phosphorus from wastewater via precipitation of struvite

b. To investigate the effects of molar ratio, pH, impact of foreign ion (iron), and degree of supersaturation on precipitation of struvite.

c. To evaluate the consequence of excess of Mg^{2+} ion than the others (NH_4^+ and PO_4^{3-}), excess of NH_4^+ than Mg^{2+} and PO_4^{3-} , excess of PO_4^{3-} than Mg^{2+} and NH_4^+ on struvite precipitation.

1.3 STUDY SCOPE

This study of phosphorus removal was conducted at batch-scale in laboratory by using synthetic wastewater as effluent simulation and from the real wastewater. Parameters such as concentration (in molar ratios and degree of supersaturation), impact of foreign ions (iron), pH and excess of Mg^{2+} compared to other ions (NH_4^+ and PO_4^{3-}) were studied. Besides these parameters, condition of the experiments such as mixing or stirring the solution with magnetic stirrer was also run.

1.4 DEFINING THE PROBLEM

Perhaps the most pressing water treatment problem at this time has to do with sludge collected or produced during water treatment. Finding a safe place to put the sludge or a use for it ha proved troublesome, and the problem is aggravated by the growing numbers of water treatment systems (Manahan, 1993). The volume of sludge generated with chemical phosphorus precipitation makes up to 49% of the waste volume as shown in Table 1.3 (Adnan *et al.*, 2003).

Table 1.3: Design criteria for 80 to 90% suspended solid removal from raw municipal wastewater by chemical treatment (Liu and Liptak, 2000).

Criteria	Ferric chloride, FeCl ₃	Alum	Hydrated lime Ca(OH) ₂
Dose, m/L	80-120	100-150	350500
Chemical sludge production, kg/mg	159—318	113-226	1814—3175

Improper disposal of wastes continues to be a subject of public and governmental concern. One of the problems to be addressed by legislative action in the U.S. is ocean dumping of sewage sludge. As example, for many years sludge from New York and New Jersey has been disposed in the Atlantic Ocean's 106-Mile

REFERENCES

- Adnan, A., Dastur, M., Mavinic, D. S. and Koch, F. A., 2004. Preliminary Investigation Into Factors Affecting Controlled Struvite Crystallization At The Bench Scale. *Journal of Environmental Engineering Science.* 3: 195 – 202.
- Adnan, A., Koch, F.A. and Mavinic D.S. 2003. Pilot-Scale Study of Phosphorus Recovery Through Struvite Crystallization – II: Applying In-Reactor Supersaturation Ratio As A Process Control Parameter. Journal of Environmental Engineering Science. 2: 473 – 483.
- Adnan, A., Mavinic, D.S., and Koch, F.A., 2003. Pilot-Scale Study of Phosphorus Recovery Through Struvite Crystallization – Examining The Process Feasibility. Journal of Environmental Engineering Science. 2: 315 – 324.
- Ali, M. I., 2007. Struvite Crystallization in Fed-batch Pilot Scale and Description of Solution Chemistry of Struvite. *Journal of Chemical Engineering and Design*. 85(A3): 344 – 356.
- Albertson, O. E. 1998. Design of Municipal Wastewater Treatment Plants. (4th edition). Alexandria: The Water Environment Federation and the American Society of Civil Engineers.
- Ali, M.I. and Schneider, P.A. 2006. A Fed-Batch Design Approach of Struvite System in Controlled Supersaturation. *Journal of Chemical Engineering Science*. 61(12): 3951 – 3961.
- Bethke, G. M. 1996. *Geochemical Reaction Modeling : Concepts and Applications.* Cary, New York: Oxford University Press Incorporated.
- Bouropoulos, N. C. and Koutsoukos, P. G. 2000. Spontaneous Precipitation of Struvite From Aqueous Solutions. *Journal of Water Research.* 213. (3-4): 381 – 388.
- Burke, M. 2002. Phosphates Go Full Cycle. Journal of Chemistry in Britain. 31 (3 4): 22 – 25.
- Christian, G. D. 1994. Analytical Chemistry. (5th edition). New York: John Wiley & Sons.
- Day, R.A., Jr and Underwood, A. L. 1980. Quantitative Analysis. (4th Edition). New Jersey: Prentice-Hall International.
- De-Bashan, L.E. and Bashan, Y. 2004. Recent Advances in Removing Phosphorus From Wastewater and Its Future Use As Fertilizer (1997-2003). Journal of Water Research. 38 (19): 4222-4246.
- Doyle, J. D. and Parsons, S. A. 2002. Struvite Formation, Control and Recovery. Journal of Water Research. 36 (16): 3925 – 3940.

- Doyle, J.D, Oldring, K., Churchley, J., Price, C. and Parsons, S.A. 2003. Chemical Control of Struvite Precipitation. *Journal of Environmental Engineering*. 129: 419-426.
- Eckenfelder, W. W. Jr., 2000. Industrial Water Pollution Control. (3rd Edition). Boston: McGraw-Hill Higher Education.
- Harvey, D., 2000. Modern Analytical Chemistry. North America: McGraw-Hill Book.
- Golubev, S. V., Pokrovsky, O. S. and Savenko, V. S. 2001. Homogeneous Precipitation of Magnesium Phosphates from Seawater Solutions. *Journal of Crystal Growth.* 223: 550 – 556.
- Greenberg A. E., Trussell R. R. and Clesceri L. S. 1985. Standard Methods: For the Examination of water and wastewater. (6th edition). Baltimore: American Public Health Organization.
- Hensen, C., Zabel, M. and Schulz, H. N. 2006. Marine Geochemistry; Benthic Cycling of Oxygen, Nitrogen and Phosphorus. Berlin Heidelberg: Springer.
- Henze, M., Harremoës, P., Jansen, J. C. and Arvin, E. 1995. Wastewater Treatment: Biological and Chemical Processes. New York: Springer-Verlag.
- Housecroft, C.E. and Sharpe, A. G. 2001. *Inorganic Chemistry*. Essex: Pearson Education Limited.
- Humenick, M.J., 1977. Water and Wastewater Treatment: Calculations for Chemical and Physical Process. New York: Marcel Decker.
- Jakobsen, F., Hartstein, N., Fradisse, J. and Golingi, T. 2006. Sabah Shoreline Management Plan (Borneo, Malaysia): Ecosystem and Pollution. Kota Kinabalu: Water and Environment (M) Sdn Bhd.
- Jaffer, Y., Clark, T.A., Pearce, P., and Parsons, S.A. 2002. Potential Phosphorus Recovery by Struvite Formation. *Journal of Water Research.* 36: 1834-1842.
- Jeong, Y.K., and Hwang, S.J. 2005. Optimum Doses of Mg and P Salts For Precipitating Ammonia Into Struvite Crystals In Aerobic Composting. Journal of Bioresource Technology. 96: 1 – 6.
- Kakabadse, G. 1979. Chemistry of Effluent Treatment. Manchester: Applied Science Publisher Ltd.
- Katebi, R., Johnson, M. A. and Wilkie, J. 1999. Control and Instrumentation for Wastewater Treatment Plants; Advances in Industrial Control. London: Springer – Verlag.
- Lagowski, J. J. 1997. MacMillan Encyclopedia of Chemistry, vol.,3. New York: Simon and Schuster.

- Le Corre, K.S., Jones, E. V., Hobbs, P. and Parsons, S. A. 2005. Impact of Calcium on Struvite Crystal Size, Shape and Purity. *Journal of Crystal Growth.* 238: 514-522.
- David Liu, H.F. and Lipták B. G. 2000. Wastewater Treatment. Florida, Boca Raton: Lewis Publisher.
- Macintyre, J. E. 1992. Dictionary of Inorganic compounds, V3. Cambridge: Chapman and Hall Chemical Database.
- Manahan, S. E. 1993. Fundamentals of Environmental Chemistry. Michigan: Lewis Publishers.
- Marsan, F. A., Côté, D. and Simard, R. R. 2005. Phosphorus transformations under reduction in long-term manured soils. *Journal of Plant and Soil.* 282: 239 – 250.
- Michalowski, T. and Pietrzyk, A. 2005. A Thermodynamic Study of Struvite + Water System. *Talanta*. **68**(3): 594 601.
- Mijangos, F., Kamel, M., Lesmes, G., and Muraviev, D. N. 2004. Synthesis of Struvite by Ion Exchange Isothermal Supersaturation Technique. *Journal of Reactive and Functional Polymers*. **60**(1–3): 151 – 161.
- Morse, G. K., Brett, S. W., Guy, J. A. and Lester, J. N. 1998. Review: Phosphorus Removal and Recovery Technologies. The Science of the Total Environment Journal. 212: 69 – 81.
- Nelson, N. O., Mikkelsen, R. L. and Hesterberg, D. L. 2003. Struvite Precipitation in Anaerobic Swine Lagoon Liquid: Effect of pH and Mg:P Ratio and Determination of Rate Constant. *Journal of Bioresource Technology*. 89: 229 – 236.
- Ohlinger, K. N., Young, T. M. and Schroeder, E. D. 1999. Kinetics Effect On Preferential Struvite Accumulation In Wastewater. *Journal of Environmental Engineering.* 32: (12).
- Ohlinger, K. N., Young, T. M. and Schroeder, E. D. 1998. Predicting Struvite Formation in Digestion. Journal of Water Research. 32:(12): 3607 – 3614.
- Patnaik, P. 1997. Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes. Florida: Lewis Publisher.
- Peavy, H.S., Rowe, D.R. and Tchobanolous, G. 1985. *Environmental Engineering*. New York: McGraw-Hill International Editions. (Civil Engineering Series).
- Perry, D. L. and Philips, S. L. 1995. Handbook of Inorganic Compounds. Florida, Boca Raton: CRC Press.

- Ronteltap, M., Maurer, M. and Gujer, W. 2007. Struvite Precipitation Thermodynamics in Source-Separated Urine. Journal of Water Research. 41: 977-984.
- Reeve, R. 2002. Introduction to Environmental Analysis. West Sussex: John Wiley & Sons Ltd.
- Roques, H. 1996. Chemical Water Treatment: Principles & Practice. New York: VCH.
- Rump, H.H. and Krist, H. 1992. Laboratory Manual for The Examination of Water, Wastewater and Soil. (2nd edition). Weinheim: VCH.
- Salvato, J.A., Nemerow, N.L. and Agardy, F.J. 2003. *Environmental* Engineering. (5th edition). New Jersey: John Wiley and Sons.
- Sawyer, C. N., McCarty, P. L. and Parkin, G. F. 2003. Chemistry for Environmental Engineering, Water Resources and Environmental Engineering. (4th edition). New York: McGraw-Hill Higher Education.
- Sawyer, C. N., McCarty, P. L. and Parkin, G. F. 2003. Chemistry for Environmental Engineering and Science. (5th edition). New York: McGraw-Hill Higher Education.
- Shortle, J. S. 2001. Environmental Policies for Agricultural Pollution Control. Cambridge, Massachusetts : CABI Publishing.
- Stratful, I., Scrimshaw, M. D. and Lester, J. N. 2001. Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate. *Journal of Water Research.* 35. 4191 – 4199.
- Shu, L., Schneider, P., Jegatheesan, V. and Johnson, J. 2005. An Economic Evaluation of Phosphorus Recovery As Struvite From Digester Supernatant. *Review Paper*. James Cook University.
- Tchobanoglous, G., Burton, F. L. and Stensal, H. D. 2003. Wastewater Engineering, Treatment and Reuse, 4th edition. New York: McGraw-Hill Higher Education.
- Vesilind, A. P., Peirce J. J. and Weiner, R. 1988. Environmental Engineering. (2nd edition). Boston: Butterworth Publisher.
- Viessman, W., Jr & Hammer, M.J. 1998. Water Supply and Pollution Control. (6th edition). California: Addison-Wesley Inc, Longman Menlo Park.
- "Association of South-East Asian Nations" (on-line) <u>www.aseanenvironment.info/scripts/count_article.asp?Article_Printed_28</u> <u>August 2007.</u>
- "World Health Organization" (on-line) wpro.who.int/NR/rdonlyres/.../0/Malaysia ehcp 07Oct2004.pdf, Printed 28 August 2007.

