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ABSTRACT 

IDENTIFICATION OF SELECTED FROGS ACOUSTICS SAMPLES USING 
WAVELET ENTROPY 

Biodiversity is one of the major studies in bio-conservation, which enable to evaluate 
the quality of ecosystem in a specific area, especially for protected area. In order to 
monitor the quality of the ecosystem structure, a long term rapid diversity assessment 
is needed. In term of that, bioacoustics has been introduced as a beneficial method for 
local species richness estimation. However, this method is still in the infancy state and 
many improvements are needed for more practical purposes. This research is carried 
out to develop new bioacoustics species identification method using wavelet entropy 
with the improvement in the species identification accuracy. To evaluate the new 
identification system, a set of sound signals of nine frog species from Microhylidae 
family were collected. Ten syllables were segmented from each frog sound and 
extracted with the corresponding features which were carried out in this research, 
namely continuous wavelet entropy, discrete wavelet entropy and wavelet packet 
entropy as test samples. The test samples were then sent into the k-nearest neighbour 
(k-NN) classifier for species identification. Based on the test samples, this thesis work 
has proven that the wavelet packet entropy is the best method in the Tsallis entropy 
approach for species identification on bioacoustics signals. 
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ABSTRAK 

Kepelbagaian biologi merupakan salah satu kajian utama daJam pemuliharaan biologi, 
di mana membolehkan untuk menilai kualiti ekosistem di tempat tertentu, terutamanya 
kepada kawasan yang terlindung, seperti hutan simpanan. Untuk pengawalan kualiti 
struktur ekosistem, kaedah penilaian secara masa panjang dan pant as ada/ah amat 
diperlukan. Dengan itu, kaedah bioakustik adalah diperkena/kan sebagai kaedah yang 
memanfaatkan untuk pengangaran kekayaan spesis tempatan. Akan tetapi, kaedah ini 
adalah masih di tahap yang tunas permulaan. Tujuan utama tesis ini adalah 
memperkenalkan kaedah baru untuk sistem pengecaman spesis bioakustik dengan 
meningkatkan ketepatan pengecaman. Kaedah yang dibangunkan dalam kajian ini 
ada/ah berdasarkan prinsip entropi wavelet Isyarat bunyi daripada sembilan spesis 
katak ke/uarga Microhy/idae dikumpul bertujuan untuk meni/ai kecekapan sistem 
pengecaman spesis baru da/am kajian ini. Sepuluh suku kata ('syllable? adalah 
ditemberengkan ('segmented? daripada setiap bunyi spesis katak tersebut dan 
seterusnya sifat-sifat suku kata adalah direntapkan (,extracted? dengan kaedah entropi 
wavelet seperti entropi wavelet berterusan, entropi wavelet diskrit dan entrop; wavelet 
paket Selepas kerentapan sifat (,feature extraction?, semua sampel kajian dikelaskan 
dengan menggunakan pengke/as k-NN bertujuan untuk mengena/pasti spesis katak. 
Daripada keputusan sampel kajian yang ditetapkan, adalah dibuktikan bahawa entropi 
wavelet paket merupakan kaedah yang terbaik dengan pendekatan entropi Tsal/is 
r!3/am pengecaman spesis mela/ui isyarat bioakustik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Nothing would work in the absence of communication. Flowers must communicate with 

bees in order for pollination to be successful. Male songbirds must communicate with 

females if they are to mate and rear young. Lions on a cooperative hunt must 

communicate with each other about how they will attack their prey. For natural 

communication system, such as those observed in the plant and animal kingdoms, 

constraints can be seen at several levels including neurobiological, physiological and 

psychological. These constraints are important, for they determine the relative success 

of the organism in responding to socio-ecologically relevant stimuli in the environment. 

For all living organisms including humans, communication provides a vehicle for 

conveying information and for expressing to others what has been perceived. But 

organisms differ with regard to what they can convey and what they perceive. 

Consequently, there is a diversity of communication system in the natural world 

(Hauser, 1996). Because of that, the study of bioacoustics has become the interest of 

many researchers. Table 1.1 shows a list of definitions of communication from 

researchers in sociobiology, behavioural ecology, sensory ecology, neuropsychology, 

cognitive psychology, and linguistics - disciplines, where the concept of 'information' 

and 'signal' form integral components of most definitions of communication. Both 

concepts are associated with long lists of operation definitions. Thus information is a 

feature of an interaction between sender and perceiver. It is believed that, signal 

carries certain kinds of information content, which can be manipulated by the sender 

and differentially acted upon by the perceiver. Signals have been designed to serve 

particular functions and the functions they serve must be evaluated in light of both 

production and perception constraints. 
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Table 1.1: Some definitions of communication: A sampler (Hauser, 1996) 

Authors (discipline) Definition 

Wilson 

(Sosiobiology) 

Hailman 

(Ethology) 

Dusenbery 

(Sensory ecology) 

Krebs and Davies 

(Behavioral ecology) 

Kimura 

(Neuropsychology) 

Johnson-Laird 

(Cognitive psychology) 

"Communication occurs when the action of or cue given by 

one organism is perceived by and thus alters the probability 

pattern of behaviour in another organism in a fashion 

adaptive to either one or both of the participants". 

"Communication is the transfer of information via signals 

sent in a channel between a sender and a receiver. The 

occurrence of communication is recognised by a difference in 

the behaviour of the reputed receiver in two situations that 

differ only in the presence or absence of the reputed 

signal. ... the effect of a Signal may be to prevent a change in 

the receiver's output, or to maintain a specific internal 

behavioural state of readiness" 

"The term 'true communication' is restricted to cases in 

which the transmitting organism engages in behaviour that is 

adaptive principally because it generates a signal and the 

interaction mediated by the signal is adaptive to the 

receiving organism as well" 

"The process in which actors use specially designed signals 

or displays to modify the behaviour of reactors" 

"The term is used here in a narrower sense, to refer to the 

behaviours by which one member of a species conveys 

information to another member of the species" 

"Communication is a matter of causal influence ... the 

communicator [must] construct an internal representation of 

the external world, and then ... carry out some symbolic 

behaviour that conveys the content of that representation. 

The recipient must first perceive the symbolic behaviour, i.e. 

construct its internal representation of the state that it 
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Lindblom 

(Linguistics) 

signifies. This final step depends on access to the arbitrary 

conventions governing the interpretation of the symbolic 

behaviour". 

"Human communication ... includes forms of verbal 

communication such as speech, written language and sign 

language. It comprises nonverbal modes that do not invoke 

language proper, but that nevertheless constitute extremely 

important aspects of how we communicate. As we interact, 

we make various gestures - some vocal and audible, others 

nonvocal like patterns of eye contact and movements of the 

face and the body. Whether intentional or not, these 

behaviours carry a great deal of communicative 

significance". 

One of the major tasks when analyzing animal sounds is the measurement of 

acoustically relevant features. There are many features which have been used in the 

bioacoustics analysis and classifications studies, where majority of these features are 

extracted manually (by hand) from spectrogram plots (Clemins and Johnson, 2006). 

Placer and Siovodchikoff (2004) have pOinted out that, since the 1950s, animal 

vocalizations have been analyzed in the form of either sonograms or patterns of 

amplitude changes. Sonograms have been a popular choice for analysis, because 

sonograms display all of the constituent frequencies in a sound wave, and the resulting 

pattern can be easily visualized. In the earlier studies, investigators used to compare 

the pattern of sonograms and amplitude changes by eyes and searching for differences. 

Unfortunately, manual acoustic identification of species is very time consuming and 

analysis time can be as much as ten times longer than the recording (Chesmore, 2004). 

In order to speed up the process and likely to lead to the development of continuous 

real-time monitoring of biodiversity, the development of automated identification 

systems is needed. 
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Species identification using electronic instruments is defined as an application 

of general pattern recognition in which an unknown (specimen) is placed into one of a 

number of possible classes depending on features extracted from measurements on 

the species (Chesmore, 2004). One of the most difficult aspects of performing research 

in bioacoustics species recognition by machine is its interdisciplinary nature, and the 

tendency of most researchers to apply a monolithic approach to individual problems. 

Generally, the development of automated bioacoustics recognition studies can 

be viewed from three aspects, which are: (1) the feature extraction, (2) the 

classification method and (3) the animal species. 

Features used in sound recognition applications are usually chosen such that 

they represent some meaningful characteristics (Huang et al., 2009). Selection of 

actual features used in recognition is a critical part for the recognition system. In term 

of bioacoustics recognition system, there are a lot of features which have already been 

discovered in the literatures. These features are introduced in the literatures are 

generally inspired from the work of speech recognition studies. These features 

normally can be categorized into two groups, time domain and frequency domain. 

Time domain approach for signal processing may include features such as frame 

energy, silence ratio, volume root mean square (RMS), volume dynamic ratio (VDR), 

total energy and zero-crossing ratio. Fourier transform based power spectrum, wavelet 

transform and linear prediction coding (LPC) coefficients are examples of methods 

used to extract relevant frequency (or time-frequency) contents for frequency (or time­

frequency) domain techniques. The selection of the classification tool can also be seen 

as an important step to solve the pattern recognition problem. In term of bioacoustics 

classification, since there are not many studies in this field, only several pattern 

recognition methods can be found in the literatures, such as artificial neural networks 

(ANN) (Chesmore, 2001), data mining techniques, template matching method, k­

nearest neighbour (k-NN) (Huang et aI., 2009), fuzzy-k-nearest neighbour (Dietrich et 

al., 2003) and hidden Markov model (HMM) (Milone et aI., 2009). Again, these 

4 
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classifiers which are introduced in the literatures for bioacoustics identification are also 

influenced a lot by speech recognition methods (Rabiner and Juang, 1993). It is found 

that, similar to classification tools, there are only several animals which are being 

studied for bioacoustics classification. The majority of the studies on bioacoustics for 

species identification which can be found in literatures are mainly focused on some 

animal species, such as birds (Chesmore, 2001), frog (Huang et al, 2009), insects 

(Chesmore, 2004), whales (Clemins and Johnson, 2006), dolphin (Houser et al., 1999) 

and bats (Vaughan et aI., 1996). 

1.2 Research Objectives 

This study is carried out to: 

1. develop a bioacoustics species identification algorithm on selected frogs 

acoustics signal with the improvement in the identification accuracy by using 

wavelet entropy approach. 

2. investigate several wavelet entropy properties using continuous wavelet 

transform (CWT), discrete wavelet transform (DWT) and wavelet packet (WP) 

based on Shannon, Renyi and Tsallis as a feature to characterize a bioacoustics 

signal. 

1.3 Contribution of the Thesis 

As mentioned earlier in this thesis, the development of bioacoustics species 

identification system helps in species identification, identification of individuals within a 

species and detection of the presence of animals. In other words, this system provides 

an opportunity to detect the appearance of new species in specific area and also the 

migration of certain animal species. 

Furthermore, it is believed that the bioacoustics species identification system 

can be used to improve the quality of ecosystem monitoring system with the properties 

of long term, long distance, low cost and rapid diversity assessment and without 

invasion to the protected area during the activity of monitoring. 

5 
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