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ABSTRACT 

Continuum robots are recognized as one of the most flexible and versatile mobile 
robots that are capable of performing various kinds of motions to navigate in 
unknown and challenging environments. However, the large number of degrees of 
freedom leads to the difficulty in designing a continuum robot. Moreover, an open- 
ended synthesis problem arises whereby there exists no formal models thus far for 
a designer to determine the optimum control strategy, body structure, number of 
segments and suitable segment lengths during the design stage. Additionally, 
conventional methods for designing continuum robots do not consider the 
optimization of multiple objectives. As such, there has not been any research 
carried out thus far on co-evolving both the morphology and controller of 
continuum robots using a multi-objective evolutionary optimization approach. 
Therefore, in this research work, a system is developed to automatically design and 
optimize both the morphology and controller of continuum robots by employing a 
novel hybridized Genetic Programming and self-adaptive Differential Evolution 
algorithm. A multi-objective evolutionary algorithm is incorporated into the artificial 
evolutionary optimization process to simultaneously maximize the locomotion 
performance and minimize the complexity of the continuum robots. In addition, a 
novel GP tree-based encoding structure is proposed to allow for the representation 
of the continuum robot's morphology and controller to be optimized simultaneously 
during co-evolution. The artificial co-evolutionary process is carried out by using the 
Webots physics simulation software. Two types of continuum robots are to be 
evolved in this research, namely the snake-like continuum robot (SLCR) and multi- 
branching continuum robot (MBCR). The outcome of this work shows that the 
Pareto-optimal front of evolved solutions are successfully obtained for the simulated 
SLCRs where the evolved heterogeneous SLCRs can perform lateral undulation, 
narrow path crawling, vertical undulation and lateral rolling moving behaviours for 
locomotion. Additionally, the evolved solutions of the MBCRs are converging to a 
point where the MBCR with the least number of segments turns out to be the 
dominating solution. In order to validate the simulated results, the evolved SLCRs 
are transferred to real world for physical testing using 3D printing technology. The 
physical testing results demonstrate that the evolved SLCRs can be successfully 
transferred from simulation to the real world for actual physical deployment in its 
task environment. An 82.55% transference accuracy is achieved in this work which 
demonstrates that the proposed multi-objective co-evolutionary algorithm is 
feasible and practical to be employed for the automatic design of continuum robots. 
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ABSTRAK 

REALISASI REKA BENTUK MUL TI-OBIEKTIF ROBOT KONTINUM 

PENGGUNAAN PENCETAKAN 3D 

Robot kontinum adalah antara jenis robot mudah alih yang amat fleksibel dan serba 
berguna yang mampu melakukan pelbagal jenis pergerakan untuk menyeberangi 
persekitaran yang tidak diketahul dan mencabar. Namun demikian, kepunyaan 
bilangan banyak darjah kebebasan pergerakan menyebabkan robot kontinum sukar 
direka bentuk. Selain itu, masa/ah sintesis terbuka akan terbangkit o%h sebab 
setakat ini tiada model rasmi wujud untuk pencipta robot menentukan strategi 
kawalan, struktur badan, bilangan segmen dan ukuran segmen yang bersesuaian di 
peringkat reka bentuk robot kontinum. Seterusnya, kaedah konvensional untuk 
mereka bentuk robot kontinum tidak mempertimbangkan pengoptimuman pelbagai 
objektif. Oleh demikian, tiada sebarang penyelidikan yang telah menceburi bidang 
evolusi kedua-dua reka bentuk struktur dan sistem kawalan robot kontinum dengan 
menggunakan kaedah evolusi pengkomputeran. Oleh sebab itu, satu sistem telah 
dicipta dalam kerja penyelidikan /ni untuk mereka bentuk dan mengoptimumkan 
kedua-dua reka bentuk struktur dan sistem kawalan robot kontinum secara 
automatik degan menggunakan kaedah novel kombinasi Pengaturcaraan Genetik 
dan Pengkamiran Evo/usi penyesualan diri. A/goritma evo/usi mu/ti-objektif juga 
digabung bersama dengan proses pengoptimuman evo/usi untuk meningkatkan 
prestasi pergerakan di samping mengurangkan kerumitan reka bentuk robot 
kontinum secara serentak. Selain ltu, struktur berasaskan GP yang novel telah 
dicadangkan untuk membenarkan pengwakilan reka bentuk struktur dan sistem 
kawalan robot kontinum supaya kedua-dua ciri reka bentuk lni dapat dioptrmurnkan 
serentak da/am proses evolusi. Proses evolusi adalah dilaksanakan dengan 
penggunaan perisian fzik simu/asi Webots. Dua jenis robot kontinum ada/ah direka 
bentuk da/am kajian penyel/dikan ini, iaitu robot kontinum berbentuk u/ar (SLCR) 
dan robot kontinum bercabang (MBCR). Hasil kerja /ni menunjukkan bahawa 
penyelesaian Pareto-optimum evolusi SLCR adalah berjaya diperolehi melalui 
simu/asi di mana pe/bagai SLCR yang berbeza dapat direka bentuk untuk 
melakukan gerakan lateral, gerakan merangkak, gerakan mengombak tegak dan 
gerakan menggulung untuk pergerakan. Di samping itu, keputusan kajian evolusi 
menunjukkan penye%saian MBCR menumpu ke satu penghujung di mana MBCR 
yang mempunyal segmen yang paling kurang menjadi penyelesaian tunggal dan 
mendominasi penye%saian lain. Dalam usaha untuk mengesahkan keputusan 
s/mulasi, SLCR yang direka bentuk meta/ui proses evo/usi to/ah dipindah ke dunia 
sebenar untuk menja/ankan ujian fizikal degan menggunkan teknologi pencetakan 
3D. Keputusan ujian fizikal menunjukkan bahawa SLCR yang direka bentuk melalui 
proses evo/usi berjaya dipindahkan darr simu/asi ke dun/a sebenar untuk 
penggunaan realistik da/am persek/taran tugasan. Ketepatan pemindahan robot 
sebanyak 82.55% telah dicapai dalam kerja kajian dan /ni menunjukkan bahawa 
a/gorltma evolusi multi-objektif yang dicadangkan ada/ah realistik dan praktikal 
untuk digunakan dalam mereka bentuk robot kontinum secara automatlk. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In this modem era, autonomous robots are not only used for operations in factories 

and technology-related environments, instead they have become part of human 

lives in which they are customized to assist humans in daily jobs or other repetitive 

tasks. Different types of robots are also designed to replace humans to work in 

hazardous environments and tasks that are beyond the humans' capability. The 

usage of search and rescue robots during the incidents of the 9/11 World Trade 

Centre attack and the 2004 tsunami strike had exhibited the importance of the role 

of robots in locating the victims within the golden time rescue period (Albert and 

Henry, 2009). Rescue robots are either designed to overcome obstacles or are 

small in size in order to pass through narrow gaps which are unreachable for 

humans. Modular robots or more specifically known as continuum robots are 

becoming increasingly popular in search and rescue mission as they possess the 

ability to perform multiple movements, and thus have grown into one of the most 

flexible and versatile mobile robots (Crespi, Badertscher, Guignard, and Ijspeert, 

2005). As the continuum robots are highly versatile and compact in size, they can 

easily navigate across narrow holes or pipes to carry out the assigned tasks or 

investigations. If there is an existence of obstacles, continuum robots can climb up 

and over the obstacles which might even be higher than the robot itself. Besides 

that, the continuum robots are also equipped with multiple degrees of freedom 

which make them capable to carry out various kinds of motions and can act as 

either locomotors or manipulators. Since the continuum robots are modular in form 

comprising of combinations of different module units, they are redundant in design, 



which means that the continuum robots can continue their locomotion even though 

one particular module is malfunctioning. Due to all these unique features, 

continuum robots possess the potential of meeting the needs for robotic mobility to 

travel and perform tasks in unknown and challenging environments. 

However, in the field of robotic design, the open-ended synthesis problem is 

still a meta-challenge. This is due to the fact that there is no formal model that 

exists thus far for a designer to determine the optimized solutions on the 

combination of building blocks, in addition to their controllers (Lipson, 2006). Due 

to the limitations of understanding and the bias of the human designer, people tend 

to design robots with pre-defined morphologies where most of them are designed 

according to human experimental trials and errors. Thereafter, the control system is 

usually restricted to function within the morphologies designed. By using this 

method, the optimization problem will arise where the designer cannot ensure if the 

pre-defined robot morphologies and controller are able to provide the optimal 

performance in its task environment. Furthermore, most of the designs 

implementing this method are only aiming on achieving a single objective which is 

to accomplish the allocated task. Unfortunately, due to optimization problems in 

real world situations, designing of robots naturally involve multiple objectives which 

are equally important and eventually may lead to conflicting scenarios among them 

(Deb, 2004). 

In. the field of continuum robot design, numerous researches have been 

carried out in modelling and designing the continuum robots' morphology and 

controller inspired from the snake movements and neuronal control mechanism. 
From these studies, it was found that both morphology and control mechanism are 

contributing to the overall moving behaviour of the continuum robots (Lipson, 

2006). Yet, there is still a lack of relevant information regarding how a continuum 

robot morphology and controller relates to its behaviour. This issue turns out to be 

an open-ended design problem where humans are unsure of the optimum control 

strategy, body structure, number of segments and suitable segment length in order 
to provide the best versatility of the continuum robots. Apart from that, the 

continuum robots possess large number of degrees of freedom which require 
significant effort from the designer to model and tune the predetermined 
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parameters so that the continuum robots can perform according to their respective 

initial design. Most of the time, such a process is very time consuming and costly. 

In order to overcome this open-ended design and optimization problem, a novel 

system is developed in this research by implementing the multi-objective co- 

evolutionary approach to design and optimize automatically both morphology and 

controller of continuum robots via an artificial evolutionary process with the aim to 

maximize the moving behaviour and minimize the complexity of continuum robots. 
Using this method, heterogeneous continuum robots with different morphologies 

along with the control system are able to be automatically designed and optimized. 

The continuum robots which were evolved with different morphologies and control 

systems for similar functionalities are referred to as heterogeneous continuum 

robots. 

In evolutionary robotics, evolutionary optimization is carried out on the 

autonomous robots' candidate solutions. The population is repeatedly modified and 

selected according to the formulated fitness function. The favourable genetic traits 

will develop repeatedly and will be passed on to their offspring generation by 

generation and thus eventually resulting in better performance in subsequent 

generations. Hence, a large number of evolutionary iterations are involved in order 
to obtain the final optimum design. As a result, it is impractical to carry out such 
trials directly in the real world. For this purpose, a physical simulation software is 

used in this research to perform the evolutionary computation where a virtual 

environment will be created in the simulator for the autonomous robots to evolve. 
In most similar studies, the research is conducted up to the simulation stage only. 
This is because the fabrication of the designed robots involves high manufacturing 

cost and numerous manufacturing constraints will arise in fabricating 
heterogeneous body parts. However, the invention of 3D printers provides a 
solution for rapid prototyping with a relatively low cost. A prototype can be easily 
fabricated from a 3D printer within a short period. For that reason, 3D printers are 
being used in this research to fabricate heterogeneous robot bodies such that the 

evolved morphologies and controllers are able to be transferred into the real world 
for physical testing in order to validate on the feasibility of the system and to make 
the robotic design more practical whereby the robot is not constrained to the 
simulation world only. 

3 
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