VIRAL NERVOUS NECROSIS (VNN) DISEASE CONTROL USING DIFFERENT CONCENTRATION OF FUCOIDAN IN THE REARING WATER OF ASIAN SEABASS JUVENILE, *LATES CALCARIFER*

HO SIE KHEE

THIS DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

AQUACULTURE PROGRAM
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

April 2010
BORANG PENGESAHAN STATUS TESIS

JUDUL: Vul Nervous Neurosis (VNN) Disease Control Using Different

Concentration of Fucoxan in the Racing Water of Asian Seabass
Juvenile, Lates Calcarifer.

Ijazah: Degree of Bachelor of Science With Honours

SESI PENGAJIAN: 09/10

Saya: [signature]

(HURUF BESAR)

mengaku membencarkan tesis (LPS/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah bahan baku Perpustakaan Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan ()

[] SULIT

(Mengandungi maklumat yang berdaftar keselamatan atau kepentingan Malaysia seperti yang termaknab dalam AKTA RAHSIA RASMI 1972)

[] TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

[] TIDAK TERHAD

PERPUSTAKAAN

UNIVERSITI MALAYSIA SABAH

Diakhiri oleh:

[signature]

NURULAIN BINTI ISMAIL

LIBRARIAN

UNIVERSITI MALAYSIA SABAH

(TANDATANGAN PUSTAKAWAN)

Alamat Tetap: W.O. T 231,

08000 Tawau, Sabah

Tarikh: 05/05/10

CATATAN: * Potong yang tidak berkenaan.

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali scab dan tempoh tesis ini perlu dikelaskan sebagai SULIT

PERPUSTAKAAN UMS

1000353751

UNIVERSITI MALAYSIA SABAH
DECLARATION

With this declare that this thesis as title [VIRAL NERVOUS NECROSIS (VNN) DISEASE CONTROL USING DIFFERENT CONCENTRATION OF FUCOIDAN IN THE REARING WATER OF ASIAN SEABASS JUVENILE, LATES CALCARIFER] by HO SIE KHEE Matrix no: BS07110038 is the result of my own independent work.

31 March 2010

HO SIE KHEE
(BS07110038)
AFFIRMED BY

Signature

1. Supervisor
 PROF. DR. SHIGEHARU SENOO

2. Examiner 1
 DR. JULIAN RANSANGAN

3. Examiner 2
 DR. SUJJAT AL-AZAD

4. Dean
 PROF. DR. MOHD. HARUN ABDULLAH
ACKNOWLEDGEMENT

This thesis has accumulated many debts of gratitude throughout its completion. Thus, I would like to extend my heartiest appreciation to a great number of people who have contributed in my conquest of completing this thesis. Without the contributions and cooperation, this thesis would not have been successful without their full commitment.

First of all, I would like to give a special thanks to my supervisor Prof. Dr. Shigeharu Senoo, who has been a great help in constructive advices on my work, valuable suggestions, continuous encouragement at various stages throughout the completion of this thesis, and providing me with a wide range of reference, also for his expert guidance and for his patience, without him this work could not have been accomplished. Hereby, I also would like to thanks Ybhg. Tan Sri Prof. Datuk Seri Panglima Dr. Kamaruzaman Hj. Ampon, Vice Chancellor of Universiti Malaysia Sabah, who had been a source of inspiration for me to complete this thesis. I am also extremely grateful to the Director of Borneo Marine Research Institute, Prof. Dr Saleem Mustafa, who helped me in getting technical facilities with his permission for this project.

I am also greatly in debt to my senior master student of Aquaculture; Mr. Mohd Addin Aazif Bin Mokhtar who has afforded me constant support and sharpened my thinking throughout this study, without this the entire project would have been much less satisfactory. I extend my grateful thank goes to all the teaching staffs, lecturers, UMS Hatchery’s staffs, Borneo Marine Research Institute’s staffs for their co-operation. Last but not least, I also would like to thank my coursemates who are third year student of Aquaculture who helped me in preparation of the project, committed in giving maximum effort while working in groups to complete this task, giving helpful suggestions, open discussions and moral support especially to Ms. Steffiana J Jipanin, Ms. Sanlin Ludin, Ms. Intan Mudhrika Ayu, Ms. Ooi Shing Yau, Mr. Ngu King Hui, Ms. Susie Sia, Mr. Lee Chee Kai, Mr. Guntur Putera Marindo and Mr. Muhammad Aizat B. Mohd Zain.

Ho Sie Khee
UMS, Kota Kinabalu
April 2010
Abstract

VNN can be categorized as one of the serious problem in larval production and cause mass mortality in grouper and Asian seabass, *Lates calcarifer*. VNN occurs during the larval and early juvenile period as early at 5 dAH up to 45 dAH and can causes mass mortalities up to 100%. In UMS fish hatchery, VNN had occurred in every batch of Asian seabass production. Mass mortalities occurred up to 100%. This study was carried out to determine the possibility of using Fucoidan to control VNN disease occurrence in *L. calcarifer* juvenile with optimum Fucoidan concentration. Early stage of *L. calcarifer* juvenile which affected by VNN from UMS hatchery’s rearing tank was real in different 7L tank with different concentration of Fucoidan given daily. In the present study, the survival rate of *L. calcarifer* juvenile was 0% in control while 20 ml/ton, 40 ml/ton, 80 ml/ton and 120 ml/ton had the survival rate of 12.78 %, 25.00 %, 45.55 %, and 9.44 % respectively. This study proved that Fucoidan can control clinical signs associated VNN disease in *L. calcarifer* juvenile with the optimum concentration of 80 ml/tonne. *L. calcarifer* juvenile shows healthy appearance such as swim normally after Fucoidan treatment.
Abstrak

VNN boleh dikategori sebagai salah satu masalah serius dalam proses pengkulturan bernih dan memberi impak yang besar kepada ikan kerapu dan siakap, *Lates calcarifer*. VNN berlaku pada peringkat larva and awal juvenil dari 5 hari sehingga 45 hari selepas menetas dan menyababkan kadar kematian yang tinggi mencecah 100%. Di hatcheri ikan UMS, penyakit ini telah berlaku di dalam setiap produksi ikan siakap. Kadar kematian mencapai 100%. Penyelidikan ini telah dijalankan untuk mengkajikan kemungkinan penggunaan Fucoidan untuk mengawal juvenil *L. calcarifer* yang telah dijangkiti penyakit VNN dengan kepekatan yang optimum. Juvenil *L. calcarifer* yang telah dijangkiti penyakit VNN dari UMS hatcheri dikumpul dan dikultur di 7L tangki dengan menambah Fucoidan yang berbeza kepekatan setiap hari. Dalam kajian ini, kadar kemandirian juvenil *L. Calcarifer* adalah 0% dalam 0 mU/ton, 12.78% dalam 20 mL/ton, 25.00% dalam 40 mL/ton, 45.55 % dalam 80 mL/ton dan 9.44 % dalam 120 mL/ton. Keputusan penyelikan menunjukkan bahawa penggunaan Fucoidan untuk mengawal penyakit VNN pada juvenil *L. calcarifer* adalah berkesan dan 80 mL/ton adalah kepekatan yang optimum. Ikan menunjukkan perlakuan yang normal dan sihat selepas perubatan Fucoidan seperti berenang dalam arah yang normal.
CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFIRMATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LISTS OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LISTS OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF PHOTOS</td>
<td>x</td>
</tr>
<tr>
<td>LISTS OF SYMBOL AND ABBREVIATION</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 ASIAN SEABASS, *Lates calcarifer*
1.2 VIRAL NERVOUS NECROSIS
1.3 FISH DISEASE CONTROL
1.4 OBJECTIVES OF STUDY

CHAPTER 2 LITERATURE REVIEW

2.1 AQUACULTURE
2.2 AQUACULTURE IN MALAYSIA
2.3 TAXONOMY OF *L. calcarifer*
2.4 MORPHOLOGY OF *L. calcarifer*
2.5 BIOLOGY OF *L. calcarifer*
2.6 DISTRIBUTION OF *L. calcarifer*
2.7 VIRAL NERVOUS NECROSIS
2.8 BIOLOGY OF VIRAL NERVOUS NECROSIS
2.9 DETECTION OF VIRAL NERVOUS NECROSIS
2.10 SEAWEED
2.11 BROWN SEAWEED
2.12 USED OF SEAWEED
2.13 USED OF FUCOIDAN
2.14 FISH HEALTH MANAGEMENT
CHAPTER 3 MATERIALS AND METHODS

3.1 FISH SAMPLES 18

3.2 FUCOIDAN PREPARATION 20

3.2.1 Fucoidan Treatment Volume 21

3.2.2 Total Volume of Concentrated Fucoidan 22

3.2.3 Fucoidan Concentration/ Dilution Fucoidan 22

3.2.4 Volume of Daily Fucoidan needed 22

3.3 EXPERIMENTAL DESIGN 23

3.4 DATA OBTAINING 28

CHAPTER 4 RESULTS

4.1 EFFECT OF DIFFERENT CONCENTRATION OF FUCOIDAN ON L. calcarifer JUVENILE 29

4.1.1 Survival Rate (%) 29

4.1.2 Optimum treatment 31

CHAPTER 5 DISCUSSION

5.1 FUCOIDAN BENEFITS 33

5.2 FUCOIDAN MECHANISM 34

5.3 MORTALITY BY OVERDOSE FUCOIDAN TREATMENT 35

5.4 OXIDIZED METABOLITE OF NITRIC OXIDE NO 37

5.5 FUCOIDAN INHIBITS PRION REPLICATION IN LYMPHORETICULAR SYSTEM 37

5.6 EXCRETION OF INFECTIOUS MATERIALS FROM GUT 38

CHAPTER 6 CONCLUSION 40

REFERENCES 41

APPENDIX 53
LISTS OF TABLES

<table>
<thead>
<tr>
<th>No. of</th>
<th>Table</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Volume of Fucoidan needed for each treatment</td>
<td>23</td>
</tr>
<tr>
<td>No. of</td>
<td>Figure</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Morphological characteristics of Lates calcarifer</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of Asian seabass as indicated in red colour block (Source: Australia Musuem Biomaps, 2009)</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Illustration of tank arrangement</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Adjusted means survival ± SD in percentage of L. calcarifer juvenile after 15 days at different concentration of Fucoidan.</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Before the application of Fucoidan, L. calcarifer juvenile already showed clinical signs associated to VNN and become very week.</td>
<td>36</td>
</tr>
<tr>
<td>5.2</td>
<td>After high concentration of Fucoidan was applied; excess molecules of Fuucoidan surround L. calcarifer juvenile and created stress condition in treatment aquarium.</td>
<td>36</td>
</tr>
</tbody>
</table>
Lists of Pictures

<table>
<thead>
<tr>
<th>No. of Photo</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Asian seabass, Lates calcarifer</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>Rearing tank used to rear L. calcarifer juvenile in UMS hatchery</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>L. calcarifer juvenile which show clinical sign (pin head and dark colouration) in rearing tank</td>
<td>20</td>
</tr>
<tr>
<td>3.3</td>
<td>Randomly arrangement of aquarium for all treatment</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Remover of dead fish at every morning</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Exchange water after dead fish was removed</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Dead fish remove from the experimental tank</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>Abnormal swimming L. calcarifer juvenile in the experimental tank</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>L. calcarifer juvenile appearance in treatment 80 ml/ton, a) dark colouration before Fucoidan treatment; b) normal colour appearance after Fucoidan treatment.</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Dead L. calcarifer juvenile in treatment 20 ml/ton tank after Fucoidan was applied still had a lot of fish die.</td>
<td>32</td>
</tr>
</tbody>
</table>
Lists of Symbol and Abbreviation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BMRI</td>
<td>Borneo Marine Research Institute</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>d AH</td>
<td>day after hatching</td>
</tr>
<tr>
<td>°C</td>
<td>degrees celsius</td>
</tr>
<tr>
<td>DO</td>
<td>dissolve oxygen</td>
</tr>
<tr>
<td>DHA</td>
<td>docosahexaenoic acid</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodaltons</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>MT</td>
<td>matrix ton</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NNV</td>
<td>Nervous necrosis virus</td>
</tr>
<tr>
<td>ppt</td>
<td>Part per thousand</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RSV</td>
<td>respiratory syncytial virus</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>spp</td>
<td>Species</td>
</tr>
<tr>
<td>Km²</td>
<td>square kilometer</td>
</tr>
<tr>
<td>TL</td>
<td>total length</td>
</tr>
<tr>
<td>UMS</td>
<td>Universiti Malaysia Sabah</td>
</tr>
<tr>
<td>VNN</td>
<td>Viral nervous necrosis</td>
</tr>
<tr>
<td>WSSV</td>
<td>white spot syndrome virus</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Asian seabass, Lates calcarifer

Asian seabass, *Lates calcarifer* (Bloch, 1790) is belonging to the order of Perciformes, family of Centropomidae, subfamily of Latinae, genus of *Lates*, and species of *calcarifer* (Makaira, 1999). Asian seabass is a catadromous species which like to migrate to other place. Common names of Asian seabass in Australia and Papua New Guinea is “Seabass”, “Giant Sea Perch”, “Barramundi”, in Philippines and Indonesia is “Kakap”, “Akame” in Japanese and “Siakap” in Malaysia (Makaira, 1999).

L. calcarifer are mostly cultured in Australia, Malaysia, Indonesia, India, Thailand and the United States. It is an important species from three principal perspectives. Firstly it is for recreational fishing, for which there exist significant stock enhancement prospect; secondly is as a candidate for commercial aquaculture; and lastly is as a candidate for domestic stocking (Makaira, 1999).

L. calcarifer known as a popular species in aquaculture is due to its rapid growth. It can reach 1.5-3.0kg in one year in ponds under optimum conditions. Nowadays, *L. calcarifer* is popular and sought-after game fish of very considerable economic importance which generates millions of dollars per year in revenue for the sport fishing and tourist industries (Makaira, 1999).
The first artificial spawning of the species in Asia was achieved in 1973 in Thailand (Barnabe, 1995), where annual hatchery production now exceeds 100 million larvae. Most of the cultured fish are now grown from hatchery-reared juveniles. During its early development stages, the industries in Australia and Asia were constrained mainly by a lack of juveniles and the cost and suitability of artificial feeds (Dhert et al., 1992; Pillay, 1993). The adoption of extensive, low-cost larval rearing methods overcame problems associated with seed stock supply and, as the industry has expanded, more efficient, lower-cost diet formulations have been developed and economic, manufactured diets have become available (Cann, 1996). Nowadays, *L. calcarifer* industry reached 4000 tonnes per year in Australian, estimated to exceed 30,000 tonnes in broader Southeast Asian and up to 800 tons in US (Makaira, 1999).

Photo 1.1 Asian seabass, *L. calcarifer*

However, *L. calcarifer* is reported to be easily susceptible to various diseases such as virus, bacterial, parasite, and also environmental diseases. In South Asian country such as Thailand, Indonesia, Philippine and as well as Malaysia *L. calcarifer* is a closely related and mostly reported infected by VNN, lymphocystis, iridovirus, and vibriosis. VNN is the major worldwide disease affecting many species including *L. calcarifer*.
1.2 Viral Nervous Necrosis

Viral nervous necrosis (VNN) also known as viral encephalopathy and retinopathy (VER), viral vacuolating encephalopathy and retinopathy, paralytic syndrome, spinning grouper disease, fish encephalitis, piscine neuropathy and whirling disease (Mori et al., 1992; Muroga, 2001).

VNN is a devastating disease (Nguyen et al., 1996) which can cause extremely high mortality to the cultured fish. Betanodavirus infections that caused viral nervous necrosis (VNN) have emerged as major constraints on the culture and sea ranching of marine fish in almost all parts of the world. More than 30 species of marine fish have been devastatingly affected during the seedling period and the culture process (Munday et al., 2002).

VNN was first reported in larvae and juveniles of hatchery-reared Japanese parrotfish, Oplegnathus fasciatus (Yoshikoshi and Inoue, 1990) but it had been describe firstly in cage cultured groupers (Epinephelus septemfasciatus) on the southern coast of Korea (Sohn et al, 1998).

Affected fishes with VNN showed abnormal swimming behaviours with spiral swimming and darting and were histopathologically characterized by vacuolation and necrosis of central nervous system (Munday et al., 2002).

L. calcarifer with VNN appearance is clearly shown at fish hatchery of Borneo Marine Research Institute (BMRI) of Universiti Malaysia Sabah (UMS). Previous study conducted confirmed the VNN occurred and it can be observed on *L. calcarifer* age ranged 5 to 45 days after hatched, early juvenile stage. Mortality can reached up to 100% when reach critical level. Two or more, or combination of clinical signs can observed from the affected *L. calcarifer* such as lethargy, abnormal swimming behaviour, pin head, and dark coloration.
1.3 Fish Disease Control

Aquaculture is becoming an increasingly important source of fish available for human consumption nowadays and expected that any long term rise in seafood production will depend on the future progress of aquaculture (FAO, 2000). As the number of aquaculture facilities grows, so does the need to develop safe and effective drug for treating fish diseases.

Fish health management is a term used in aquaculture to describe management practices which are designed to prevent fish disease. In fish health management, there are three main principals which are pathogenesis, diagnosis and control. Pathogenesis of a disease is the mechanism by which an etiological factor causes the disease.

Diagnosis is the identification of the nature of the disease, either by the process of elimination or other analytical methods while control is use some chemical or vaccination or other method to control the disease to continues affect the fish. Disease control is appropriate when nonobligate pathogen are involve or when effective chemotherapeutic and management practice are available. The purpose of control is to reduce pathogen level in an environment or host so that the disease will not occur (Plumb, 1999).

An understanding of such relationships is important for the prevention, control, and treatment of disease in aquaculture (Villena, 2003). Recent researched proved Fucoidan extracted from *Cladosiphon okamuranus* was reported able to control white spot syndrome disease (WSSV) in *Penaeus japonicus* (Takahashi *et al.*, 1998). Results of previous study shown that the 12-15g shrimps were fed with crude Fucoidan of 200mg/kg everyday give highest survival rate than others which is 93%. Therefore, Fucoidan might be an alternative control measure in controlling viral diseases such as VNN.
1.4 **Objectives of Study**

The main objective of this study is to solve the problem of the juvenile rearing and thus improve the productivity of this species in hatchery. To achieve this main objective, two specific objectives which are outlined as followed:

I. To determine the possibility of using Fucoidan to control VNN disease occurrence in *L. calcarifer* juvenile

II. To determine the optimum Fucoidan concentration for VNN disease control
CHAPTER 2

LITERATURE REVIEW

2.1 Aquaculture

Aquaculture is cultivation of aquatic life included finfish, shrimp, seaweed, algae, plankton, molluscs, crustaceans and other aquatic plants. Unlike fishermen, aquaculture cultivates or rears the aquatic population under controlled conditions. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from predators; and the organisms must also be harvested by an individual or corporate body which has owned them throughout their rearing period (FAO, 2001).

Aquaculture products are grown either in earthen ponds, freshwater lakes and bays, or in the open sea. Medium involved in aquaculture is water. The types of water used vary and depends on the cultivation species, it generally divide into freshwater, brackish water and seawater.

The rearing species are fed and cared to ensure its optimum health and product quality. Once the rearing species reached an appropriate size, the crops were harvested, processed and shipped to market, generally arriving within hours of leaving the water to ensure the product quality.
Recently seafood demand increased rapidly. When the role of aquaculture as a food producing sector is considered in combination with the importance of fish in the diets of many of the worlds’ poorest nations, it seems that aquaculture is assured a central role in efforts to meet the challenge to reduce poverty and hunger by half by 2015. The contribution of aquaculture to food security has been put forward by numerous authors and organisations where the direct provision of food and the indirect benefits of employment and income are cited amongst the benefits arising from aquatic animal production (Natasja et al., 2008).

Hence, good planning, management and efforts are necessary to improve aquaculture industry in term of making mass production of commercial aquatic live in high quality with the aid of modern technology and bio-technology.

2.2 Aquaculture in Malaysia

The aquaculture industry in Malaysia will be able to generate revenue of up to RM20 billion. There is much potential in aquaculture, a sub-sector of agriculture, as Malaysia is surrounded by water. The National Aquaculture Development Plan was launched in late 2007 as part of the government’s move to improve the fishing industry. The Fisheries Department of Malaysia is targeting 507,558MT of aquaculture products by 2010. The products would come from 49 aquaculture industrial zones, covering 28,000 hectares, in the country (NNN-Bernama, 2010).

Malaysia started the aquaculture field in the year of 1920 until today and there are over 19 species finfish, crustaceans and shellfish cultivated. There are many important commercial species are suitable for aquaculture development in Malaysia due to the geomorphological features. Most of these species possess all the desirable biological attributes for culture, including rapid growth, hardiness, large size and short reproductive cycle. The main freshwater species cultured in Malaysia nowadays are Tilapia, Catfish
and Carp, whereas brackish water species are cockles, prawns, mussels and Asian seabass (FAO, 2008).

Malaysia is a country which mostly bounded by sea with 547,000 km², enormous amount of freshwater resources from the river, lakes and streams all over the country and climatological conditions favouring aquaculture. There are about 6,410 km² of mangrove areas along the coasts, which provide breeding and nursery grounds for fish and crustaceans, besides ensuring the supply of shelter and food to other marine organisms and protecting the coastline from erosion (Yusoff et al., 1997).

2.3 Taxonomy of L. calcarifer

L. calcarifer belongs to the family Centropomidae. Members from this family inhabit waters from coastal marine, estuaries to freshwater including mangrove estuaries and rocky to coral reefs. Some of its species are popular and sought-after with high economic importance (Makaira, 1999). On the other word, *L. calcarifer* is a euryhaline species. The taxonomic classification and description of *L. calcarifer* is given below (Lai, 2008).

Taxonomy classification:

- **Kingdom**: Animalia
- **Phylum**: Chordata
- **Subphylum**: Vertebrata
- **Class**: Actinopterygii
Subclass: Teleostomi
Order: Perciformes
Family: Centropomidae
Genus: *Lates*
Species: *Lates calcarifer* (Bloch, 1970)

2.4 Morphology of *L. calcarifer*

Body of *L. calcarifer* is elongate, compressed, with a deep caudal peduncle. It head is pointed with concave dorsal profile becoming convex in front of the dorsal fin. It mouth large in size if compare with other species, slightly oblique, upper jaw reaching to behind eye and the teeth is villiform. The scales on the body of *L. calcarifer* are large (Lai, 2008).

![Morphological characteristics of *L. calcarifer*](Figure 2.1)

*Figure 2.1 Morphological characteristics of *L.calcarifer* (Modified from FAO, 2008)*
The dorsal and anal fins of *L. calcarifer* have scaly sheaths. There are seven to nine spines on the dorsal fin and ten to eleven soft rays; a very deep notch almost dividing spiny from soft part of fin. It pectoral fin is short and rounded, several short, strong serrations above its base. The anal fin is rounded which had three spines and seven to eight short rays. The caudal fin is rounded too. The colour of this fish normally is olive brown above with silver sides and belly, usually juveniles or green or blue above and silver below. No spots or bars are present on the fins or body of *L. calcarifer* (Makaira, 1999).

2.5 Biology of *L. calcarifer*

Asian seabass, *L. calcarifer*, locally known as ‘Siakap’ and also known as Barramundi was first described by Bloch (1790) is an economically important finfish in Malaysia. However, the local names of *L. calcarifer* various form place to places.

The *L. calcarifer* is a protandrous hermaphrodite and catadromous species. The change to female usually takes place at about seven years of age and a body length about 80 cm, but is apparently more related to age than to body length. The body length at which sex change occurs varies somewhat across its extensive geographic range, probably due to habitat, food and genetic differences (Lai, 2008).

L. calcarifer are highly fecund which mean a single female in 120 cm (TL) may produce 30–40 million eggs. Hence, even for a large-scale hatchery production only small amount of broodstock are necessary to produce large amount of larvae.

Spawning season of *L. calcarifer* are varies within the range of this species. *L. calcarifer* in northern Australia spawn between September and March. In Philippines, *L. calcarifer* spawn from late June to late October, while in Thailand *L. calcarifer* spawning is associated with the monsoon season, with two peaks during the northeast monsoon, August until October and the southwest monsoon, February until June. Spawning occurs near river mouths or around coastal headlands. *L. calcarifer* spawn after the full and new
moons during the spawning season, and the spawning activity is usually associated with incoming tides in which can help to bring the eggs and larvae into the estuary (Rimmer, 2006).

2.6 Distribution of *L. calcarifer*

L. calcarifer can be found in coastal, estuaries and fresh water habitats. It has a very extensive range in tropical and semi-tropical areas of indo-West Pacific. Its distribution ranges from western India, around Sri Lanka to Bay of Bengal, and through the whole of Southeast Asia to eastern Papua New Guinea and northern Australia (Lai, 2008).

![Figure 2.2 Distribution of *L. calcarifer* as indicated in red colour block (Australia Museum Biomaps, 2009)](image-url)
References

FAO. 2000. The stage of world fisheries and aquaculture. Food and Agricultural

FAO. 2003. A guide to the seaweed industry. Food and Agricultural Organisation of the

/countrysector/naso_malaysia/en.

92(2).

neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. Journal of
General Virology 77, pg. 2067-2071.

edu/pdffiles/FA/FA00500.pdf.

associated with mass mortalities in larval barramundi, Lates calcarifer Bloch.
Journal of Fish Diseases 13, pg. 245.

analysis of betanodaviruses in subclinically infected aquarium fish and

45

Villena, A.J. 2003. Application and needs of fish and shellfish cell culture for disease control in aquaculture. *Review in Fish Biology and Fisheries* 13(1), pg. 111-140

