Bioleaching
of Nickel Ores
Bioleaching of Nickel Ores

Pogaku Ravindra
Kodali Bharathi

UNIVERSITI MALAYSIA SABAH
Kota Kinabalu • Sabah • 2009
http://www.ums.edu.my/penerbit

A Member of Malaysia Scholarly Publishing Council (MAPIM)
Dedicated to
Shiridi Sai
and
my divine parents
TABLE OF CONTENTS

LIST OF FIGURES xi
LIST OF PHOTOS xii
LIST OF TABLES xiii
FOREWORD xiv
ACKNOWLEDGEMENTS xvi

CHAPTER 1 INTRODUCTION
1.1 Overview 1
1.2 Global scenario of mining industry 1
1.3 Processing of low-grade ores/concentrates 2
1.4 Biohydrometallurgy
  1.4.1 Definition of bioleaching 4
  1.4.2 Classification of bioleaching systems 5
  1.4.3 Factors affecting the bioleaching process 5
  1.4.4 Advantages/disadvantages of bioleaching 7
1.5 Nickel 7
  1.5.1 Characteristics of nickel 7
  1.5.2 Resources of nickel 8
  1.5.3 Nickel sulphide ores 9
  1.5.4 Applications of nickel 10
  1.5.5 Alloys of nickel 11
1.6 Status of microbial leaching of nickel 11
  1.6.1 International 11
  1.6.2 National 13
1.7 Significance of microbial leaching of nickel 14

CHAPTER 2 DEVELOPMENT AND CURRENT STATUS OF NICKEL BIOLEACHING
2.1 Overview 17
2.2 Historical perspective of microbial leaching 17
2.3 Microorganisms involved in leaching 19
2.4 Acidithiobacillus ferrooxidans 23
  2.4.1 Physiological characteristics 24
  2.4.2 Bioenergetics 26
  2.4.3 Enzymes involved in sulphur metabolism 30
2.5 Microbe-mineral interactions 32
2.6 Proposed hypotheses of bioleaching
   2.6.1 Direct mechanism
   2.6.2 Indirect mechanism
   2.6.3 Galvanic interaction
   2.6.4 Electrobioleaching
2.7 Factors affecting bioleaching
   2.7.1 Temperature
   2.7.2 pH
   2.7.3 Redox potential
   2.7.4 Particle size and pulp density
   2.7.5 Aeration and agitation
   2.7.6 Mineralogy
   2.7.7 Jarosite
   2.7.8 Metal tolerance
2.8 Preadaptation studies
2.9 Microbial leaching of nickel
2.10 Objectives

CHAPTER 3 ANALYSIS OF ORE SAMPLES
3.1 Materials and methods
   3.1.1 Materials used
   3.1.2 Experiment methodology
   3.1.3 Preparation of concentrate sample
   3.1.4 Elemental and mineral phase analysis
   3.1.5 Analytical instrumentation
      3.1.5.1 Estimation of pH and E_h
      3.1.5.2 Atomic absorption spectroscopy (AAS)
      3.1.5.3 X-ray diffraction spectroscopy (XRD)
3.2 Results and discussion
   3.2.1 Grinding and particle size fractionation
   3.2.2 Chemical analysis
   3.2.3 Mineral phase analysis

CHAPTER 4 MICROBES
4.1 Materials and methods
   4.1.1 Microorganisms used
      4.1.1.1 Maintenance of bacterial strains
      4.1.1.2 Growth of Tf
   4.1.2 Standardization of growth conditions of Tf
      4.1.2.1 Effect of agitation
4.1.2.2 Effect of medium composition 59
4.1.2.3 Effect of temperature 59
4.1.2.4 Effect of pH 59
4.1.3 Estimation of growth 59
  4.1.3.1 Determination of iron oxidation by Ortho-phenanthroline assay 60
  4.1.3.2 Titrimetric analysis of ferrous iron 61
4.1.4 Preadaptation studies 62
  4.1.4.1 Adaptation to metals 63
  4.1.4.2 Adaptation to copper flotation concentrates 63
  4.1.4.3 Efficacy of adaptation 63
4.2 Results and discussion 64
  4.2.1 Maintenance of the cultures 64
  4.2.2 Standardization of Tf growth conditions 64
    4.2.2.1 Effect of agitation 64
    4.2.2.2 Effect of pH 64
    4.2.2.3 Effect of temperature 66
    4.2.2.4 Growth pattern under optimum conditions in M9K medium 67
  4.2.3 pH variation during growth period (M9K medium) 68
  4.2.4 Preadaptation studies 69
    4.2.4.1 Adaptation of Tf strains to copper and nickel 69
    4.2.4.2 Adaptation of Tf strains to copper flotation concentrate 71

CHAPTER 5 LEACHING
5.1 Materials and methods 73
  5.1.1 Bacterial leaching technique 73
  5.1.2 Methods of leaching 74
    5.1.2.1 Static method 74
    5.1.2.2 Agitation method 74
  5.1.3 Optimization of parameters of nickel leaching 74
    5.1.3.1 Effect of temperature 74
    5.1.3.2 Effect of pH 75
    5.1.3.3 Effect of particle size 75
    5.1.3.4 Effect of pulp density 75
    5.1.3.5 Effect of agitation 75
5.1.3.6 Effect of inoculum size 76
5.1.3.7 Effect of residence time 76
5.1.4 Flowchart of bioleaching 76
5.1.5 Leachability studies 77

5.2 Results and discussion 77
5.2.1 Preliminary leaching experiments 77
   5.2.1.1 pH of the leaching system 78
   5.2.1.2 Leaching by static and agitation methods 78
5.2.2 Optimization of process parameters of nickel leaching 79
   5.2.2.1 Temperature 79
   5.2.2.2 Initial pH 80
   5.2.2.3 Particle size 81
   5.2.2.4 Pulp density 83
   5.2.2.5 Agitation (rpm) 84
   5.2.2.6 Inoculum size 85
   5.2.2.7 Residence time 86
5.2.3 Leachability studies under optimal conditions 88
   5.2.3.1 Leachability of different metals by unadapted strains (under optimal conditions) 88
   5.2.3.2 Nickel leaching by metal adapted strains 89
   5.2.3.3 Nickel leaching by concentrate adapted strains 90
   5.2.3.4 Comparison of nickel leachabilities by different strains 90
5.2.4 Changing trend of pH, $E_h$, and $Fe^{3+}/Fe^{2+}$ ratio on nickel leachability 91
   5.2.4.1 pH interaction 93
   5.2.4.2 $Fe^{3+}/Fe^{2+}$ ratio 94
   5.2.4.3 Redox potentials 95
5.2.5 Selective leaching of nickel by galvanic interactions 98
5.2.6 Conclusions 102
5.2.7 Future recommendations 102

SUMMARY 103
APPENDIX 107
REFERENCES 111
INDEX 129
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Electron transfer in <em>Tf</em> during oxidation of ferrous</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of generation of proton gradients in <em>Thiobacillus ferrooxidans</em></td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic mechanistic bioleaching model</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Direct and indirect mechanisms of bioleaching</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of pH on ferrous oxidizing ability of <em>Tf</em> strains in M9K medium</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of temperature on ferrous oxidizing ability of <em>Tf</em> strains in M9K medium</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Growth pattern of <em>Tf</em> strains with incubation period under standardized conditions of growth</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Changes in pH during different growth phases of <em>Tf</em> strains in M9K medium</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of adaptation of <em>Tf</em> strains to Cu$^{2+}$ and Ni$^{2+}$ on their growth and activity in M9K medium</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Loss of ferrous oxidizing ability of <em>Tf</em> strains with preadaptation to copper flotation concentrate in M9K medium</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of initial pH on leaching activity of <em>Tf</em> strains</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of particle size on leaching activity of <em>Tf</em> strains</td>
<td>82</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of pulp density on leaching activity of <em>Tf</em> strains</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of residence time on leaching activity of <em>Tf</em> strains</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Leachabilities of Ni, Cu and Co by unadapted strains of <em>Tf</em> under optimal conditions</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of leachability of nickel by different strains of <em>Tf</em></td>
<td>90</td>
</tr>
<tr>
<td>5.7</td>
<td>pH drop during leaching period</td>
<td>92</td>
</tr>
<tr>
<td>5.8</td>
<td>Change of Fe$^{3+}$/Fe$^{2+}$ ratio with time period</td>
<td>92</td>
</tr>
<tr>
<td>5.9</td>
<td>Profile showing leachabilities of nickel and copper with time period by concentrate adapted strains of <em>Thiobacillus ferrooxidans</em></td>
<td>93</td>
</tr>
</tbody>
</table>
# LIST OF PHOTOS

<table>
<thead>
<tr>
<th>Photo</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Formation of Acid mine drainage due to activity of <em>Acidithiobacillus ferrooxidans</em></td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Electron micrographs of <em>Acidithiobacillus ferrooxidans</em></td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Stock cultures of two strains of <em>Thibacillus ferrooxidans</em></td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td><em>Tf</em> culture grown in different compositions of 9K medium</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td><em>Tf</em> culture adapted to different conditions</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Leach liquor containing solubilized metals</td>
<td>77</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Factors affecting the microbial leaching process</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Chemical properties of nickel</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Different mineral phases of nickel ores</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Composition and applications of different types of nickel alloys</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Microorganisms involved in leaching</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Physiological characteristics of ( Tf )</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Electrochemical series of metal sulphides</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Microorganisms used in nickel leaching</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Operating conditions for metal analysis by AAS</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Elemental composition of copper flotation concentrate</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Mineral phases present in the concentrate (prior to leaching)</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition of 9K medium</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Composition of M9K medium</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Concentrate particle size fractionation</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of temperature on Ni leachability by ( Tf ) strains</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of agitation on Ni leachability by ( Tf ) strains</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of inoculum size on Ni leachability by ( Tf ) strains</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>Optimal parameters of nickel leaching</td>
<td>88</td>
</tr>
<tr>
<td>5.6</td>
<td>Percentage recovery of nickel by metal adapted and concentrate adapted strains</td>
<td>89</td>
</tr>
<tr>
<td>5.7 (a)</td>
<td>Redox potentials of the pulp during bacterial leaching (( Tf )-44)</td>
<td>96</td>
</tr>
<tr>
<td>5.7 (b)</td>
<td>Redox potentials of the pulp during bacterial leaching (( Tf )-231)</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>Mineral phases present in the leach residue of copper concentrate</td>
<td>99</td>
</tr>
</tbody>
</table>
FOREWORD

In recent years, the application of bio-hydrometallurgy methods to the extraction of metals from minerals has definitely gained a prominent role supported by several bioleaching and biooxidation processes operating in different sites over the world. This may be an important reason why fundamental research has received a new powerful stimulus with fascinating discoveries. In addition, it surely will become the cause of future development in the field.

This book entitled BIOLEACHING OF NICKEL ORES authored by Prof. Dr. Pogaku Ravindra, a Professor of Chemical and Bioprocess Engineering of Universiti Malaysia Sabah (UMS), provides the state-of-knowledge on the relevance of bioleaching technology in metal extraction.

Two important aspects of bioleaching are covered in this book. One is the nature and diversity of the microorganisms that are central to the core function of bioprocessing of ores, and how these may be monitored in commercial operations. The biophysical strategies used by different microorganisms and microbial consortia for the biodegradation of the ubiquitous mineral pyrite, as well as what is known about the pathways and genetics of the enzymes involved in iron and sulphur oxidation are also described.

I am very glad to support the publication of this book by one of UMS's distinguish academicians-cum-researcher who enjoys a long-standing reputation for disseminating scientific and technological knowledge, especially with respect to chemical and bioprocess engineering in developing countries over the last 30 years. In 2007, Prof. Dr. Pogaku Ravindra published, with UMS support, a book on Teasers of Chemical Engineering. This book has become quite popular among Chemical engineering students as well as teachers.

I hope that this new book could go some way towards introducing undergraduate and postgraduate students, interested academia and industrialists to the main subject of bioprocessing with special emphasis on the last contribution of the chemical and microbial aspects of bioleaching process and use of microorganisms in the treatment of complex ores and concentrates. I recommend this book to chemical and bioprocess students, tutors, lecturers, etc.
I am extremely happy to note that this book is probably the first Malaysian publication of its kind, particularly at a time when most of the Malaysian universities are offering biotechnology courses, both at undergraduate and postgraduate levels, in engineering and science streams.

I wish the authors, the best and this book, a success.

 Brig. Gen. Prof. Datuk Seri Panglima Dr. Kamaruzaman Hj. Ampon  
Vice-Chancellor  
Universiti Malaysia Sabah  
Kota Kinabalu, Sabah  
2009
ACKNOWLEDGMENTS

This book would not have been possible without the extraordinary support of a number of people.

I want to express, my gratitude to Mr Yim Zhi Hui for formatting this book. It was he who helped in my first book “Teasers of Chemical Engineering”.

If publishing involves the intersection of art and commerce, Penerbit UMS has consistently showed too much of a good quality in making this book as good as it could posibly be. Their faith in this book has led them to go the extra mile, time and time again, and for that I am tremendously grateful. Ms Lindsy has been tireless in managing the production process despite very tight deadlines.

Several good friends from UMS and the School of Engineering and Information Technology extended their support in bringing out this book. To all of them, I offer my heartfelt thanks.

The Vice Chancellor of UMS, Brig. Gen. Prof. Datuk Seri Panglima Dr. Kamaruzaman Hj. Ampon, deserves special mention for his extraordinary generosity in encouraging me to write this book and penning the foreword for this book.

Finally, I gratefully acknowledge the unstinted patience, support and cooperation of my wife Ramadevi, our children Divya, Sweta and Raghavendra Abhishek in allowing me to work extra hours.