HARVEST AND POSTHARVEST PHYSICOCHEMICAL CHARACTERISTICS OF THREE SELECTED SABA BANANA (*Musa balbisiana* cv. Saba) ACCESSIONS IN SABAH

SER LI YUN

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF AGRICULTURAL SCIENCE WITH HONOURS

HORTICULTURE AND LANDSCAPING PROGRAMME
FACULTY OF SUSTAINABLE AGRICULTURE
UNIVERSITI MALAYSIA SABAH
2017
UNIVERSITI MALAYSIA SABAH
BORANG PENGESAHAN TESIS

JUDUL: HARVEST AND POSTHARVEST PHYSICOCHEMICALS CHARACTERISTICS OF THREE SELECTED SABA BANANA (Musa balbisiana cv. Saba) ACCESSIONS IN SABAH.

UAZAH: HORTICULTURE AND LANDSCAPING

SAYA: SER LI YUN SESI PENGAJIAN: 2012/2013 (HURUF BESAR)

Mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

(TANDATANGAN PENULIS)
Alamat Tetap: M.80, Jalan Kota 3, Taman Minyak, 88400 Terengganu, Johor

(TANDATANGAN PUSTAKAWAN)

Disahkan oleh:
NURULAIN BINTI ISMAIL
PUSTAKAWAN KANAN
UNIVERSITI MALAYSIA SABAH

(TANDATANGAN PENYELIA)
(NAMA PENYELIA)

TARIKH: 13 Jan 2017

TARIKH: 12.01.2017

Catatan:
*Potong yang tidak berkenaan.
*Jika tesis ini SULIT dan TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
*Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana Secara Penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that this dissertation is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that no part of this dissertation has been previously or concurrently submitted for a degree at this or any other university.

SER LI YUN
BR12110118
13 January 2017
VERIFIED BY

I. Dr. Jupikely James Silip
SUPERVISOR

II. Dr. Mohammed Selamat Madom
CO-SUPERVISOR
ACKNOWLEDGEMENT

I will first acknowledge with respect and gratitude to my Final Year Project (FYP) supervisor, Dr. Jupikely James Silip and my co-supervisor, Dr. Mohammed Selamat Madom for their scientific advices, encouragements, and mentoring throughout the journey of this dissertation writing.

Sincere thanks are also extended to all the lecturers and farm administrative staffs at Faculty of Sustainable Agriculture of Universiti Malaysia Sabah who have shared their valuable knowledge and suggestions during the thesis study.

Special appreciations are due to the coordinates of the project, Miss Shahida Mohd. Sharif and Miss Izyan Ayuni Mohd. Selamat for leading the project and coordinating the project that ensure the effective preparation and delivery of all project paperwork and all necessary documentation on scheduled time.

I also wish to thank the laboratory assistants of the faculty especially Madam Nurul Syakina binti Marli for assisting me on materials and equipment preparation.

Next, I will like to express my deepest appreciation to my parents, who willingly scarified everything to provide me the most and best education possible despite their own limited education.

I would like to acknowledge the help and support to my friends and course-mates, Teo Wei Ting, Irene Pang Yi Ling, Sierra Julius and Chee Hoyau for their collaboration and forbearance during the progression of my dissertation. I extend my sincere gratitude for all the help and support that I have received.

Lastly, I will like to acknowledge Faculty of Sustainable Agriculture for all the financial supports to final year students to carry out and complete my research work. Thank you.
ABSTRACT

The study was carried out in the Postharvest laboratory of Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, campus Sandakan from 15th July 2016 until 15th September, 2016 to evaluate the standard quality of harvest and postharvest physical and chemical characteristic of three selected Saba banana accessions collected from three different district of Sabah (which were Sandakan, Keningau and Kota Marudu). The experiment was conducted in a Completely Randomized Design (CRD) with four replications from the three accessions based on maturity indices for each individual analysis test (3 X 8 X 4). Fruit characteristics of Saba banana at harvest including mean weight of banana hand, number of fingers per hand, volume of finger, geometric mean diameter, sphericity, and aspect ratio were analysed by using One-Way Analysis of Variance (ANOVA). Postharvest physical and chemical characteristics changes of Saba banana which were changes in weight loss percentage (WLP), pulp to peel ratio (g/g), pulp firmness (kgF), visual appearances (VA), degree of browning (DOB), pulp and peel colour in terms of lightness (L*), chroma (C*) and hue angel (h°) value, total soluble solid (TSS), pH value, titratable acidity (TA), pulp and peel moisture content (MC), and rate of filtration (ROF) were subjected to two-way ANOVA at 5% level of significance. The study rejected Ho whereby the harvest and postharvest physical and chemical characteristics of three selected Saba banana accessions in Sabah have a significant differences. The result shown that postharvest characteristics at harvest of Saba banana from each accessions were significant differences except number of fingers per hand. Both the weight of banana per hand and volume of finger of Saba banana from Kota Marudu was the highest as compared to other accessions. The extracted data shows significant differences in physical and chemical characteristics on a daily basis with passage of maturity stage. The most useful and reliable maturity indices for banana fruits of Saba variety were firmness, peel colour and total soluble solid content. The investigation can be helpful to process industry since the selection of fruit with optimum value of respective physicochemical property can yield the product with good quality. The physicochemical characteristics evaluated in this study can be important postharvest quality criteria for the processing, screening and breeding of Saba banana. Similar studies on the influence of climate and farmer’s cultural practice can be done for further ascertain the changes in postharvest physical and chemical characteristics of Saba banana in Sabah.
CIRI-CIRI FIZIKAL DAN KIMIA SEMASA TUAI DAN PENGENDALIAN LEPAS
TUAI BAGI TIGA AKSESI PISANG SABA (Musa balbisiana cv. Saba) TERPILIH
DI SABAH

ABSTRAK

Kajian ini telah dijalankan di Makmal Pengendalian Lepas Tuai, Fakulti Pertanian Lestari, Universiti Malaysia Sabah, Kampus Sandakan dari 15 JULAI 2016 sehingga 15 September 2016 untuk menilai standard kualiti ciri-ciri fizikal dan kimia semasa tuai dan pengendalian lepas tuai bagi tiga aksesi pisang Saba yang terpilih di tiga daerah yang berlainan di Sabah (iaitu Sandakan, Keningau dan Kota Marudu). Eksperimen ini dijalankan sebagai dua faktor uji kaji faktorial dalam Design Rawak Lengkap (CRD) dengan empat ulangan daripada tiga aksesi berdasarkan indeks kematangan bagi setiap analisis ujian individu (3 X 8 X 4). Ciri-ciri buah Saba pisang pada ketika menuai termasuk berat min pisang tangan, jumlah buah pisang pada sesikat pisang, jumlah jari, diameter geometri min, ‘sphericity’ dan nisbah aspek telah dianalisis dengan menggunakan ‘Satu-hala Analisis Varians’ (ANOVA). Perubahan ciri-ciri fizikal dan kimia lepas tuai bagi pisang Saba iaitu perubahan dalam peratusan penurunan berat (WLP), nisbah antara buah dan kulit pisang (g / g), ketegasan buah (kgf), penampilan visual (VA), tahap pemerangan (DOB), pulpa dan warna kulit dari segi ringan (L *), kroma (C *) dan warna malaikat (h°) yang bernilai, jumlah larut pepejal (TSS), nilai pH, tertitrat keasidan (TA), kandungan kelembapan kulit dan buah (MC) dan kadar penapisan (ROF) telah dianalisis dengan menggunakan ANOVA dua hala pada tahap 5% signifikasi. Kajian ini menolak Ho dimana ciri-ciri fizikal dan kimia semasa tuai dan pengendalian lepas tuai bagi pisang Saba mempunyai perbezaan yang ketara. Keputusan menunjukkan bahawa ciri-ciri lepas tuai pada masa menuai mempunyai signifikan kecuali jumlah buah pisang pada sesikat pisang. Data yang diterima menunjukkan perbezaan yang signifikan dalam ciri-ciri fizikal dan kimia pada setiap hari dengan peringkatan kematangan buah. Indeks kematangan yang paling berguna dan boleh dipercayai untuk buah pisang Saba adalah ketegasan buah, warna kulit dan jumlah kandungan pepejal larut. Kajian itu boleh membantu dalam proses industri kerana pemilihan fizikokimia buah-buahan yang bernilai optimum boleh menghasilkan produk yang berkualiti baik. Ciri-ciri fizikokimia yang dinilai dalam kajian ini boleh menjadi kriteria kualiti pengendalian lepas tuai untuk pemprosesan, pemeriksaan dan peembali pisang Saba. Kajian yang sama pada pengaruik iklim dan amalan petani boleh dilakukan untuk terus memastikan perubahan lepas tuai dalam ciri-ciri fizikal dan kimia pisang Saba di Sabah.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS, UNITS AND ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FORMULAE</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background 1
1.2 Justification of the Study 3
1.3 Objectives 4
1.4 Hypothesis 4

CHAPTER 2 LITERATURE REVIEW

2.1 Bananas 5
 2.1.1 Botanical of Banana 6
 2.1.2 Economical Importance and Uses of Banana 8
 2.1.3 Genotypic Characteristics of Banana 9
2.2 Saba Banana 10
 2.2.1 Type of Saba Banana 11
 2.2.2 Agronomic characteristics of Saba Banana 13
2.3 Pre-harvest Factors Affecting Quality 13
 2.3.1 Agro Climate 14
 2.3.2 Terrain and Area 14
 2.3.3 Cultivar and Rootstock Genotype 14
 2.3.4 Mineral Nutrition 14
 2.3.5 Irrigation and Drainage 15
2.4 Fruit Maturation 15
 2.4.1 Maturity Indices 16
 2.4.2 Green-life 17
 2.4.3 Ripening 17
 2.4.4 Shelf-life 18
2.5 Post-harvest Qualities Changes of Banana 18
 2.5.1 Weight Loss 18
 2.5.2 Pulp to Peel Ratio 19
 2.5.3 Firmness 19
 2.5.4 Visual Appearances 19
 2.5.5 Peel and Pulp Colour 20
 2.5.6 Total Soluble Solids 21
 2.5.7 pH and Total Titratable Acidity 22
 2.5.8 Moisture and Dry Matter Content of peel and pulp 22
 2.5.9 Viscosity and Rate of Filtration 22
CHAPTER 3 METHODOLOGY 24

3.1 Study Site and Duration 24
3.2 Experimental Design 24
3.3 Samples Collection and Interim Storage 25
3.4 Physical Characteristics Analysis 25
 3.4.1 Measurement of Linear Dimensions 25
 3.4.2 Sphericity (Sp) and Aspect Ratio (Ra) 27
 3.4.3 Weight and Volume Measurement 27
 3.4.4 Weight Loss Percentage (WLP) 28
 3.4.5 Pulp to peel ratio 28
 3.4.6 Firmness 28
 3.4.7 Visual Appearance (VA) 29
 3.4.8 Degree of Browning (DOB) 29
 3.4.9 Pulp and peel Colour 29
3.6 Chemical Characteristics Analysis 30
 3.6.1 Measurement of Total Soluble Solid 30
 3.6.2 Measurement of pH of Pulp Juice 30
 3.6.3 Measurement of Titratable Acidity 30
 3.6.4 Measurement of Pulp and Peel Moisture Content (MC) 31
 3.6.5 Rate of Filtration (ROF) 32
3.7 Statistical Analysis 32

CHAPTER 4 RESULTS 33

4.1 Physical Characteristics of Saba Banana 33
 4.1.1 Mean Weight of Banana Hand, Number of Fingers per Hand and Volume of Finger of Saba Banana at Different Accessions 33
 4.1.2 Geometric Mean Diameter, Sphericity, and Aspect ratio of Saba Banana at Different Accessions 34
 4.1.3 Changes in Weight Loss Percentage (WLP) 35
 4.1.4 Changes in Pulp to Peel Ratio (g/g) 37
 4.1.5 Changes in Pulp Firmness (kgF) 39
 4.1.6 Changes in Visual Appearances (VA) 40
 4.1.7 Changes in Degree of Browning (DOB) 40
 4.1.8 Changes in Pulp Colour 43
 4.1.8.1 Lightness (L*) Value of Pulp Colour 45
 4.1.8.2 Chroma (C*) Value of Pulp Colour 47
 4.1.8.3 Hue angle (h°) Value of Pulp Colour 49
 4.1.9 Changes in Peel Colour 51
 4.1.9.1 Lightness (L*) Value of Peel Colour 51
 4.1.9.2 Chroma (C*) Value of Peel Colour 53
 4.1.9.3 Hue angle (h°) Value of Peel Colour 55
4.2 Chemical Characteristics of Saba Banana 55
 4.2.1 Changes in Total Soluble Solid (TSS) 57
 4.2.2 Changes in pH value of Pulp Juice 59
 4.2.3 Changes in Titratable Acidity (TA) of Pulp Juice 62
 4.2.4 Changes in Pulp Moisture Content (MC) 63
 4.2.5 Changes in Peel Moisture Content (MC) 65
 4.2.6 Changes in Rate of Filtration (ROF) 67
| CONTENT |
|------------------|---|
| CHAPTER 5 DICUSSION | Page |
| 5.1 Postharvest Characteristics at Harvest | 69 |
| 5.2 Physical Characteristics Changes of Banana | 69 |
| 5.2.1 Changes in Weight Loss Percentage (WLP) | 70 |
| 5.2.2 Changes in Pulp to Peel Ratio (g/g) | 70 |
| 5.2.3 Changes in Pulp Firmness (kgF) | 71 |
| 5.2.4 Changes in Visual Appearances (VA) | 72 |
| 5.2.5 Changes in Pulp Colour | 72 |
| 5.2.6 Changes in Peel Colour | 72 |
| 5.3 Chemical Characteristics Changes of Banana | 74 |
| 5.3.1 Changes in Total Soluble Solid (TSS) | 74 |
| 5.3.2 Changes in pH value of Pulp Juice | 74 |
| 5.3.3 Changes in Titratable Acidity (TA) of Pulp Juice | 75 |
| 5.3.4 Changes in Pulp and Peel Moisture Content (MC) | 75 |
| 5.3.5 Changes in Rate of Filtration (ROF) | 76 |
| CHAPTER 6 CONCLUSION | 77 |
| 6.1 Conclusion | 77 |
| 6.2 Recommendations | 78 |
| REFERENCES | 79 |
| APPENDICES | 86 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Agronomic Characters of Saba banana</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Maturity Indices of Banana based on Colour of Banana Peel</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>List of accessions as manipulated variables in this study for Saba banana</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean weight of banana hand, number of fingers per hand and volume of finger of Saba banana (Musa balbisiana cv. Saba)</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Geometric Mean Diameter (GMD), Sphericity (Sp) and Aspect ratio (Ra) of Saba banana (Musa balbisiana cv. Saba) finger</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Main and interaction effects of Accessions (A) and Maturity Indices (B) on the Weight loss Percentage (WLP), Pulp to peel ratio, and Firmness of Saba banana (Musa balbisiana cv. Saba) fruits</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Main and interaction effects of Accessions (A) and Maturity Indices (B) on the Visual Appearance (VA), and Degree of Browning (DOB) of Saba banana (Musa balbisiana cv. Saba) fruits</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Main and interaction effects of Accessions (A) and Maturity Indices (B) on the Pulp colour and Peel colour in term of Lightness (L*) value, Chroma (C*) value and Hue angle (H°) value of Saba banana (Musa balbisiana cv. Saba)</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Main and interaction effects of Accessions (A) and Maturity Indices (B) on the Total Soluble Solid Content (TSS), pH value, and Titratable acidity (TA) of Saba banana (Musa balbisiana cv. Saba)</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Main and interaction effects of Accessions (A) and Maturity Indices (B) on the Pulp Moisture Content, Peel Moisture Content and Rate of Filtration of Saba banana (Musa balbisiana cv. Saba) fruit</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Morphology of Banana</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Saba type 1- ‘Dippig’. (b) Saba type 2- ‘Compact’</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) Major diameter of banana bunch and (b) banana finger</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Major dimensions of a banana fruit diameters.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(b) The perpendicular (W, T) of a banana fruit/ finger.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Interaction between accessions and maturity indices in weight loss percentage (%) of Saba banana (Musa balbisiana cv. Saba).</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>Changes in weight loss percentage (%) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Changes in pulp to peel ratio (g/g) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Interaction between accessions and maturity indices in pulp firmness of Saba banana (Musa balbisiana cv. Saba).</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Changes in pulp firmness (kgF) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Interaction between accessions and maturity indices in visual appearance of Saba banana (Musa balbisiana cv. Saba).</td>
<td>41</td>
</tr>
<tr>
<td>4.7</td>
<td>Changes in visual appearance of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.</td>
<td>43</td>
</tr>
<tr>
<td>4.8</td>
<td>Changes in degree of browning of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.</td>
<td>44</td>
</tr>
<tr>
<td>4.9</td>
<td>Interaction between accessions and maturity indices in lightness (L*) value of pulp colour of Saba banana (Musa balbisiana cv. Saba).</td>
<td>45</td>
</tr>
</tbody>
</table>
4.10 Changes in L* value of pulp colour of three selected Saba banana (*Musa balbisiana* cv. Saba) accessions based on the maturity indices

4.11 Interaction between accessions and maturity indices in chroma (C*) value of pulp colour of Saba banana (*Musa balbisiana* cv. Saba).

4.12 Changes in C* value of pulp colour of three selected Saba banana (*Musa balbisiana* cv. Saba) accessions based on the maturity indices.

4.13 Interaction between accessions and maturity indices in the hue angle (h°) value of pulp colour of Saba banana (*Musa balbisiana* cv. Saba).

4.14 Changes in Hue angle (h°) value of pulp colour of three selected Saba banana (*Musa balbisiana* cv. Saba) accessions based on the maturity indices.

4.15 Interaction between accessions and maturity indices in lightness (L*) value of peel colour of Saba banana (*Musa balbisiana* cv. Saba).

4.16 Changes in L* value of peel colour of three selected Saba banana (*Musa balbisiana* cv. Saba) accessions based on the maturity indices.

4.17 Interaction between accessions and maturity indices in chroma (C*) value of peel colour of Saba banana (*Musa balbisiana* cv. Saba).

4.18 Changes in C* value of peel colour of three selected Saba banana (*Musa balbisiana* cv. Saba) accessions based on the maturity indices.

4.19 Interaction between accessions and maturity indices in the hue angle (H°) value of peel colour of Saba banana (*Musa balbisiana* cv. Saba).

4.20 Changes in Hue angle (h°) value of peel colour of three selected Saba banana (*Musa balbisiana* cv. Saba) accessions based on the maturity indices;

4.21 Interaction between accessions and maturity indices in total soluble solid (°Brix) of Saba banana (*Musa balbisiana* cv. Saba).
4.22 Changes in total soluble solid (°Brix) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.

4.23 Interaction between accessions and maturity indices in pH value of Saba banana (Musa balbisiana cv. Saba).

4.24 Changes in pH value of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.

4.25 Changes in titratable acidity (%) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.

4.26 Interaction between accessions and maturity indices in pulp moisture content (%) of Saba banana (Musa balbisiana cv. Saba).

4.27 Changes in pulp moisture content (%) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.

4.28 Interaction between accessions and maturity indices in peel moisture content (%) of Saba banana (Musa balbisiana cv. Saba).

4.29 Changes in peel moisture content (%) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.

4.30 Changes in rate of filtration (ml/min) of three selected Saba banana (Musa balbisiana cv. Saba) accessions based on the maturity indices.
LIST OF SYMBOLS, UNITS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>C*</td>
<td>Chroma Unit</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>DOB</td>
<td>Degree Of Browning</td>
</tr>
<tr>
<td>°Brix</td>
<td>Degrees Brix</td>
</tr>
<tr>
<td>FSA</td>
<td>Faculty Of Sustainable Agriculture</td>
</tr>
<tr>
<td>FAMA</td>
<td>Federal Agricultural Marketing Authority</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>HSD</td>
<td>Honestly Significant Different</td>
</tr>
<tr>
<td>h°</td>
<td>Hue Angle Of Colour</td>
</tr>
<tr>
<td>inch</td>
<td>Inches</td>
</tr>
<tr>
<td>INIBAP</td>
<td>International Network For Improvement of Banana and Plantain</td>
</tr>
<tr>
<td>kgF</td>
<td>Kilogram Force</td>
</tr>
<tr>
<td>L*</td>
<td>Lightness Of Colour</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>NS</td>
<td>Not Significant</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>ROF</td>
<td>Rate Of Filtration</td>
</tr>
<tr>
<td>MYR</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>TA</td>
<td>Titratable Acidity</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Soluble Solids</td>
</tr>
<tr>
<td>UMS</td>
<td>Universiti Malaysia Sabah</td>
</tr>
<tr>
<td>VA</td>
<td>Visual Appearance</td>
</tr>
<tr>
<td>WLP</td>
<td>Weight Loss Percentage</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight Per Volume</td>
</tr>
<tr>
<td>Formula</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.1 GMD = (MID x MOD x MAD) (^{1/3})</td>
<td>26</td>
</tr>
<tr>
<td>Where, MID = short diameter (cm); MOD = middle diameter (cm); MAD = long diameter (cm)</td>
<td></td>
</tr>
<tr>
<td>3.2 (S_p = \left(\frac{a \times b \times c}{a}\right)^{1/3})</td>
<td>27</td>
</tr>
<tr>
<td>Where, a = length (cm), b = width (cm) and c = thickness (cm)</td>
<td></td>
</tr>
<tr>
<td>3.3 (R_s = \frac{b}{a} \times 100%)</td>
<td>27</td>
</tr>
<tr>
<td>Where, a = length (cm), b = width (cm)</td>
<td></td>
</tr>
<tr>
<td>3.4 (V = \frac{W_{dw}}{D_w})</td>
<td>27</td>
</tr>
<tr>
<td>Where, V = volume of banana; (W_{dw}) = weight of displaced water; (D_w) = density of water</td>
<td></td>
</tr>
<tr>
<td>3.5 % Weight loss = (\frac{W_1 - W_2}{W_1} \times 100%)</td>
<td>28</td>
</tr>
<tr>
<td>Where (W_1) = fruit weight at initial period; (W_2) = fruit weight at sampling period</td>
<td></td>
</tr>
<tr>
<td>3.6 Ratio = (\frac{Pulp \ weight \ (g)}{Peel \ weight \ (g)})</td>
<td>28</td>
</tr>
<tr>
<td>3.7 Percentage of titratable acidity =</td>
<td>31</td>
</tr>
<tr>
<td>(\frac{\text{Titre (mL) \times Normality of NaOH (0.1N) \times Volume made up \times 64 \ g \times 100}}{\text{Sample volume (10mL) \times Sample weight \times 100}})</td>
<td></td>
</tr>
<tr>
<td>3.8 Wet weight of sample (D) = B – A</td>
<td>31</td>
</tr>
<tr>
<td>Weight of dry sample (E) = C – A</td>
<td></td>
</tr>
<tr>
<td>Moisture content (%) = (\frac{D-E}{D} \times 100%))</td>
<td></td>
</tr>
<tr>
<td>3.9 Rate of filtration (ml/min) = (\frac{\text{Amount of banana juice (ml)}}{\text{Time of filtration (min)}})</td>
<td>32</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background
Banana is classified as major tropical zone fruit. It is a climacteric fruit which can be harvested mature-green and ripened off plant. In Malaysia, banana is considered as an important sources of food especially in the rural areas in which it is often used to extend, supplement or substitute staple food after wheat, rice and corn due to its easily accessibility and affordable price (Stover and Simmonds, 1987). Besides, banana is of great socio-economic and nutritional significance which help to generate significant export revenue and employment to indigenous people. Generally, banana is consumed both as an energy yielding food and as dessert on a daily basis.

Saba banana which its scientific name is *Musa balbisiana* cv. Saba, is mainly cultivated at Sabah states of Malaysia with the largest orchard at Kota Belud of 673.5 hectares (Nurhafiza, 2014) and almost can be found in most of the market of the state. The area of cultivating Saba banana is expected to expand in the near future due to the continuous increase of local and foreign demand. This cultivar is consider very new and infamous in the country even though the neighbor country, Philippine had grown it as the main cultivar throwback of twenty years ago. The strength of Saba banana which is resistant to major diseases that infested by other banana cultivars in the country have make it emerge to become popular amongst the population in Peninsula Malaysia during this few years.

Saba banana is a cooking banana whereby it is cooked before been eaten (Dadzie and Orchard, 1997). It attain height of four meters as the largest and tallest stem amongst all banana cultivar. It is hardy and resistant to drought. In fact, people at Peninsula Malaysia have many other choices on varieties of banana including 'Pisang

Before 2009, Saba banana is uncompetitive and infamous in Peninsula due to high shipment costs and high market price from Sabah. The price of Saba banana increase dramatically throughout the supply chain from post-harvest handling to exportation until it reach the destined retailed market. For the past three years, export of Saba banana to peninsula and Sarawak shown an exponentially increase whereby 500 tonnes of bananas were exported to other states from 200 farmers of Sabah in Year 2014. Federal Agricultural Marketing Authority (FAMA) continue buy Saba bananas from Sabah for export throughout the country due to other banana crops varieties such as Pisang Abu, Pisang Mas at peninsula had been affected by wide spread leaf spot disease called black Sigatoka (*Mycosphaerella fijiensis*) (Swennen, 1990).

A small trial shipment went to southern Johor in Year 2009 to test the market, followed by another in Year 2010, according to Mr. Sebastian Chew, the director of FAMA in Sabah. 180 tonnes of the fruit costing MYR 85,000 ($ 27,300) in ten containers have been sold to peninsular customers. This amount is continuously increase throughout the years particularly those in Johor state whose banana plantations were hit hard by a mysterious disease since Year 2008. Manufacturers there turn the bananas into chips and condiments.

According to Kaliwon (2015), an assistant director for permanent crops development in the agriculture department, reported that the bananas can be harvested in nine or thirteen months after planting. Farm price of Saba banana varies between MYR 0.50-0.80 per kg, and it is sell for about MYR 1.50-1.80 per kg in the Peninsula market.
1.2 Justification of Study

The post-harvest characteristics at harvest is essential in the screening of new banana. In this study, we are interested to know the postharvest quality changes of Saba banana in Sabah. Depending on the locality or country, most producers and consumers of banana, cooking banana and plantain usually prefer large size bunches with large or small size fingers and/or long or short fingers.

In addition, screening of new Musa hybrids for their fruit physicochemical characteristics at harvest may be important in the design of packaging for the fruit which would enhance efficient handling and transportation. Assessment of the post-harvest quality attributes (such as peel and pulp colour, pulp firmness, total soluble solids, moisture and dry matter content) are important in determining fruit maturation and it could also complement sensory evaluation studies. Screening of new banana, cooking banana and plantain hybrids for their post-harvest characteristics at harvest would provide the plant breeder useful information for future breeding work. It would also enable meaningful comparison of new Musa hybrids to existing cultivars.

Faculty of Sustainable Agriculture, Universiti Malaysia Sabah has been at the forefront of carry out research on Saba banana with superior agronomic potential. The harvest and post-harvest physical and chemical characteristics of three Saba banana accessions need to be demonstrated in a standard quality to meet the exportation demand to prevent rejection from the imported states.

Research was undertaken to screen and characterise the harvest and post-harvest attribute of Saba banana by using high technology tools at the field as well as at the laboratory. This research was carried out in order to generate a standard quality of harvest and post-harvest characteristics chart which can be referred by farmer or agroentrepreneur in the cultivating process to sustain the production of Saba banana at the state.
1.3 Objectives

The objective of the study were:

i. To establish the major harvest and post-harvest physicochemical characteristics of Saba banana from three selected accessions in Sabah into a standard quality chart which will provide useful information to assist breeders and researchers in the post-harvest selection of Saba banana.

ii. To identify the differences of postharvest physicochemical characteristics between the harvested Saba bananas from the three accessions.

1.4 Hypothesis

\[H_0 : \] There were no significant differences between the harvest and postharvest physicochemical characteristic of three selected Saba banana accessions in Sabah.

\[H_A : \] There were a significant differences between the harvest and postharvest physicochemical characteristic of three selected Saba banana accessions in Sabah.
CHAPTER 2

LITERATURE REVIEW

2.1 Bananas

All edible banana fruits are produced by plants belonged to the genus Musa which is one of the genera in the family Musaceae (others two are Ensete and Musella). Its name comes from the Arabic word ‘banan’ which means finger (Lim and Tee, 2010). According to Robinson (2011), the banana (English) has various names: bananier (French), pisang (Malay, Indonesian), kluai (Thailand), chuoi (Vietnam), xiang jiao (Chinese).

Bananas are a major staple as well as cash crop in developing countries and the most eaten fruit in Europe and Northern America. World production of around 99 million metric tons in 2014 with India as the world top producing country give an annual banana production of 27.7 million tons from an area of 0.847 million ha (Hassim, 2016). While China as the second producing country (12.08 million tons) and Philippines as the third higher producing country has produce 8.05 million tons in Year 2013. Ranking of Malaysia in the production of banana is No.38 with only 288,677 tons (0.29 million tons). Worldwide, 400 million people depend on banana for food security and income generation (Hoe et al., 2015).

According to Cruz et al., (2008), the bananas are indigenous to the Southeast Asia, Australia tropics and the Indian subcontinent, developing in modern time secondary loci of genetic diversity in Africa, Latin America, and the Pacific. It is likely to have been first domesticated in Papua New Guinea. The biggest markets for banana are North America and Europe followed by Japan and Eastern Europe (Hailu et al., 2013). Although bananas are one of the most important commercial crops in the world, it is estimated that 87% of banana production is consumed locally (Langhe et al., 2009).
2.1.1 Botanical of Banana

Banana plant is a giant (2 – 9 m) perennial monocotyledonous that classed as an arborescent herb. Its trunk is a false stem called pseudostem and consists of concentric layers of leaf sheaths rolled into a cylinder of 20 – 50 cm in diameter. The morphology of banana trees is shown in Figure 2.1. While the true stem is a large underground corm. According to Bathan et al. (2010), the ideal conditions for banana growing are soil is deep, friable, and rich in organic matter with complete nutrient and mineral elements, and has adequate moisture throughout the year; soil texture of 40 % clay, 75 % silt or 85 % loam; soil pH of 6.5, soil topography of flat to rolling lands up to 45 degrees gradient. Banana grows well in tropical climate with temperature range of 22 to 32°C at land elevation from sea level above 1,000 meters (Huber, 1983).

Bananas are ideally suited for agroforestry, for interplanting in diversified systems, and for plantation-style cultivation in full sun. It grow vigorous where rainfall is distributed evenly throughout the year. The plants are susceptible to stunt and damage due to prolonged drought. The lifespan of individual plants is about 1-1.5 years. However, the bananas will continually reproduce asexually by shooting suckers from a subterranean stem. The plants produce leaves, flowers and foliage throughout the year. Individual plant only produces inflorescence and fruit once (Gervacio et al., 2008).

The fruit is a berry although it develops from an inferior ovary. The exocarp is made up of the epidermis and the parenchyma layer, with the flesh being the mesocarp. The endocarp is composed of a thin lining next to the ovarian cavity. The axial placenta has numerous airspaces and ventral vascular bundles (Morton, 1987). Each node of the rachis has a double row of flowers, forming a cluster of fruit that is commercially called a ‘hand’, with the individual fruit called a ‘finger’.

There are many different sizes and shapes of fruit, with plantains being usually very large compared to the dessert-type bananas or others. The same is true for external and pulp colour, which normally vary from cream to slight orange. The fruit is variable in size, colour and firmness, but is usually elongated and curved, with soft flesh rich in starch covered with a rind which may be green, yellow, red, purple, or brown when ripe. The fruits grow in clusters hanging from the top of the plant (Picq, et al., 1998).
Cultivated varieties are typically seedless. When seeds are present, they vary among species in shape and morphology. Seeds of *Musa balbisiana*, parent of many commercial edible banana varieties, are dark brown, ovoid, about 4 mm (0.2 in) long, with a conspicuous white, powdery Endosperm.

Key

1. Pseudostem
2. Sucker
3. Single flower (front petal removed)
4. Single flower (petal not removed)
5. Leave
6. Bunch of bananas
7. Rachis
8. Bract
9. Male bud/ male flower
10. Corm
11. Underground stem (rhizome)
12. Finger
13. Hand of banana
14. Cross section of finger

Figure 2.1 Morphology of Banana

Source: FAO, 2012
2.1.2 Economical Importance and Uses of Banana

Bananas have varied human uses, ranging from the edible bananas to cold-hardy fiber, and ornamental plants. They have been a staple of the human diet since the dawn of recorded history. The fruit is served as a dessert (banana) or cooked and eaten as a staple (plantain) either as the green, half ripe, or ripe fruit. (Nelson et al., 2006).

The banana is of great nutritional value. It is a rich source of carbohydrates (Prabha and Bhagyalakshmi, 2011). Besides, it is an excellent source of potassium which is suitable for athletes owing to its higher energy potential and also help to prevent muscle spasms. Bananas can be used to fight intestinal disorders like ulcers, to overcome constipation and gastritis (Kumar et al., 2012). Banana is carotenoids-rich which scientifically proven for their synergistic effects and protective properties against various degenerative disorders including cancer, stroke, cardiovascular, Alzheimer’s disease and Parkinson’s disease (Abdel, 2009).

Musa species attained a position of central importance within Pacific societies: the plant is a source of food, beverages, fermentable sugars, medicines, flavorings, cooked foods, silage, fragrance, rope, cordage, garlands, shelter, clothing, smoking material, and numerous ceremonial and religious uses (Turner, 1997). Leaves of banana have a wide variety of useful applications, including as disposable umbrellas, food wrappers, plates and temporary raincoats. It is commonly used for wrapping foods as well as food decoration. Some Musa species and hybrids with colourful floral bracts and flowers are utilized in tropical flower arrangements (Langhe et al., 2009). In addition, leaves can be used to wrap root balls of seedlings before transplanting.

Leaf fibers are used to make string, thread, and rope. In New Guinea, the leaf and plant fibers also used to make thread and cloth. Musa basjoo (the Japanese fiber banana) and M. textilis are still used to make high-quality clothing and fabrics (Aurore et al., 2009). Thin parings carefully cut from the outer pseudostem of these fiber bananas are shiny, strong strips of natural fibers suitable for hand or machine weaving. Silage is made from fruits and stems to feed livestock such as cattle. Banana peels is a very nutritious food for animals.

Banana sap has been used in many cultures as dye. Any banana sap will stain clothes indelibly black colour. In India, the sap is used as tannin and for tattooing in some Pacific islands (Sudheer and Indira, 2007). Varieties that have red or golden colour
REFERENCES

Abdel, E. S. S. 2009. Total Phenolic Contents and Free Radical Scavenging Activity of Certain Egyptian Ficus Species Leaf Samples. *Food Chemistry* **114**: 1271-1277

Nurhafiza, Y. 2014. High demand for Pisang Saba at peninsular Malaysia. Insight Sabah, 18 May, 2012

