UNIVERSITI MALAYSIA SABAH

DECLARATION OF THESIS STATUS FORM

TITLE: EVALUATION OF THE REPRODUCTIVE TOXICITY OF DIAZINON IN MALE AND FEMALE RAT OFFSPRING EXPOSED TO THEIR MOTHERS THROUGHOUT PREGNANCY AND LACTATION

DEGREE: DOCTOR OF PHILOSOPHY

STUDIES SESSION: 2005-2008

I, SRINIVASA JAYACHANDRA declared for this thesis to be kept in Library UMS, Universiti Malaysia Sabah to serve the following purposes:

1. This thesis is a proprietary rights of Universiti Malaysia Sabah
2. Library UMS is permitted to make copies for studies purposes only.
3. Library UMS is allowed to make copies as an exchange material among other higher institutions.
4. NOT LIMITED

Declared by,

SRINIVASA JAYACHANDRA

Address:

# 388, 6TH CROSS
7TH MAIN, KUMARASWAMY LAYOUT
2ND STAGE
BANGALORE: 560078
KARNATAKA STATE
INDIA

(Verified by Librarian)

Supervisor: ASSOC. PROF. DR. URBAN J A D'SOUZA

Date: 9 JULY 2008

NOTE: © Thesis meant is Doctor of Philosophy thesis, Masters by Research thesis or dissertation for Masters by Coursework and Research or First Degree Project Report.
EVALUATION OF THE REPRODUCTIVE TOXICITY OF DIAZINON IN MALE AND FEMALE RAT OFFSPRING EXPOSED TO THEIR MOTHERS THROUGHOUT PREGNANCY AND LACTATION

SRINIVASA JAYACHANDRA

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF MEDICINE
UNIVERSITI MALAYSIA SABAH
2007
DECLARATION

This literary work is my own product except the summary and references of which I have explained each one where the source is from.

9 July 2008

Srinivasa Jayachandra
PS05-016-001(A)
CERTIFICATION

TITLE: EVALUATION OF THE REPRODUCTIVE TOXICITY OF DIAZINON IN MALE AND FEMALE RAT OFFSPRING EXPOSED TO THEIR MOTHERS THROUGHOUT PREGNANCY AND LACTATION

DEGREE: DOCTOR OF PHILOSOPHY

DATE OF VIVA: 22 MARCH 2007

DECLARED BY

SUPERVISOR:

Assoc. Prof. Dr. Urban J A D'Souza
ACKNOWLEDGEMENTS

The author is delighted to express gratitude to Associate Professor Dr. Urban J A D'Souza, School of Medicine, Universiti Malaysia Sabah, for his valuable guidance, constant supervision and timely interventions in hard times during this research work. Without his helping hand, this piece of work would not have attained the present shape.

The author has immense pleasure to express his heart felt thanks to Prof. Dr. Osman Ali, Dean of School of Medicine, Universiti Malaysia Sabah and all faculty members of the school for granting him to pursue his studies and their kind co-operation throughout his research.

The author expresses his sincere thanks to Universiti Sains Malaysia for initiating him to do this work and University Malaysia Sabah for allowing him to continue; and their kind support whenever he needed.

The author acknowledges with thanks the invaluable support from the School of Arts and Sciences, Monash University Malaysia to carry out his research work with particular thanks to Prof. Dr. Pua Eng Chua, Ms.Ng Bean Lean, Dr.Ton So Ha and Dr.Sagathevan K. He always remembers them for their incredible help rendered towards him.

The author sincerely thanks all Science laboratory technicians of Monash University Malaysia for the unforgettable help throughout the research work, which enabled him to complete his studies. His special thanks to Ms. Chitra Ramachandran, Mr. Ragavan A/LMurugiah, Ms.Suleka, Mr. Keat Soon, Mr.Md.Nasrun Bin Muhamad, Mr. Saminathan Ratanam, Mr. SriJegan, Mr. Madaswamy Muppudari and Ms. Radha for their zealous encouragement and support throughout his work.

The author would also take this opportunity to thank Ms. Anne Marthew, Dr. Joseph Swamy and Dr.Chua Tock Hing for helping him in his research work. He sincerely thanks Dr.Krishnan R Iyengar, Associate Professor of Pathology, Universiti Malaya for interpreting the histopathology slides.

The author takes this opportunity to express his reverence and affection towards his parents, sister, brother, brother in law and friend Mr. Maxim Pinto for giving him the much needed moral support in turbulent times of his life.
Evaluation of the Reproductive Toxicity of Diazinon in Male and Female Rat Offspring Exposed to Their Mothers Throughout Pregnancy and Lactation.

Diazinon is an organophosphate insecticide widely used in agriculture. It is also known to have adverse health effects. Possible reproductive toxic effects are less studied. The aim was to study the possible reproductive adverse effects of the diazinon on rat offspring exposed in utero and during lactation. Dams were gavaged with diazinon at 0, 10, 15 and 30 mg/kg/day prior to mating, during mating, pregnancy and lactation in separate groups. Maternal and reproductive outcome data and, male and female rat offspring reproductive parameter at puberty (PND70) and adulthood (PND 170) were examined. Male rat offspring were examined at puberty and adulthood for body weight, testis weight, epididymis weight, sperm count, motility and morphology, pituitary-gonadal hormone levels-FSH, LH, prolactin and testosterone, testicular marker enzymes activities-alkaline phosphatase, acid phosphatase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase and cholinesterase, qualitative and quantitative testicular and epididymal histology, total protein and Vitamin C levels and immunohistochemistry for 3 beta HSD. Similarly, female rat offspring were examined at puberty and adulthood for body weight, uterus weight, ovary weight, histological examination of ovary and uterus, pituitary-gonadal hormone levels, ovarian marker enzymes activities, ovarian total protein and Vitamin C levels and immunohistochemistry for 3 beta HSD. Diazinon caused a significant decrease in maternal body weight during gestation at 30mg/kg, but still there was an increase in body weight irrespective of the dose. The body weight, ovarian weight, uterus weight, plasma estradiol, prolactin and ovarian Vitamin C levels were decreased at postnatal day 22 in 30 mg/kg dose dam-groups. 30 mg/kg dose induced significant adverse effects both at puberty and at adulthood in rat offspring. 30mg/kg diazinon dose, the male rat offspring at puberty showed a decrease in testicular weight, sperm count, motility, with an increase in percent abnormal sperm, degenerative changes with a decline in pituitary-gonadal hormones, 3 beta HSD and total protein level. Moreover, an increase in activity of alkaline and acid phosphatase was also observed. At adulthood, there was a decrease in testicular weight, sperm count, motility with an increase in percent abnormal sperm and a decrease in pituitary hormones, 3 beta HSD and total protein levels with an increase in testicular marker enzyme levels. Female rat offspring at puberty in 30 mg/kg dose showed a decrease in body weight, ovarian weight, pituitary-gonadal hormones levels, 3 beta HSD, total protein and Vitamin C concentration and an increase in ovarian marker enzymes levels. At adulthood, the female rat offspring exhibited a decrease in body weight, ovarian weight, pituitary-gonadal hormone levels, 3 beta HSD, G6PD activity, total protein and Vitamin C concentration with an increase in the activity of alkaline phosphatase, acid phosphatase and lactate dehydrogenase. There was evidence of some adverse reproductive effects at 15 mg/kg dose in both male and female rat offspring. The study showed that most of the adverse effects were irreversible and were evident at both puberty and adulthood in rat offspring, although a few parameters reverted back to the normal growth pattern. The degree of toxicity of diazinon on the male and female rat offspring was identical at puberty and adulthood. Overall, diazinon is a reproductive toxicant in both male and female offspring when exposed during prenatal and postnatal life.

Key words: Reproductive toxicity, Diazinon, rat offspring
ABSTRAK

Diazinon merupakan sejenis racun serangga organofosfat yang telah banyak digunakan dalam pertanian. Racun serangga ini boleh mendatangkan kesan buruk terhadap kesihatan manusia. Walau bagaimanapun, kesan tosirknya kepada sistem pembiakan masih tidak banyak dikaji. Tujuan penyelidikan ini adalah untuk mengkaji kesan buruk diazinon ke atas pembiakan pada progeni tikus jantan dan betina pada peringkat pubert (PND70) dan dewasa (PND 70) telah dikaji. Progeni tikus jantan diberikan diazinon sebelum kelahiran dan berat badan sebelum dikeluarkan secara berasingan dalam kumpulan semasa musim pembiakan, kehamilan dan laktasi. Data keluaran maternal dan pembiakan serta parameter pembiakan untuk progeni tikus jantan dan betina pada peringkat pubert (PND70) dan dewasa (PND 70) telah dikaji. Progeni tikus jantan dikaji ke atas peringkat pertuban dan dewasa untuk berat badan, berat testis, berat epididimis, bilangan sperma, pergerakan dan morfologi, paras hormon FSH, LH, prolaktin dan testosteron, enzim fosfatase, asid fosfatase, laktat dehidrogenase, glukos-6-fosfatase dehidrogenase dan kolineresterase, histologi kualitatif dan kuantitatif testikel dan epididimis, jumlah protein dan paras Vitamin C dan ujian immuno kimia terhadap 3 beta HSD. Progeni tikus betina dewasa dan pubert pula dikaji: berat badan, berat uterus, berat ovari, ujian histologi terhadap ovari dan uterus, paras hormon pituitari-gonad, aktiviti enzim penanda ovari, paras hormon ovari, paras Vitamin C dan ujian immuno kimia terhadap 3 beta HSD. Diazinon menyebabkan pengurangan ketara berat badan maternal ketika bunting pada dos 30 mg/kg, tetapi masih ada peningkatan dalam berat badan dengan masa tanpa mengira paras dos. Berat badan, berat ovari, berat uterus, plasma estradiol, prolaktin dan paras Vitamin C menurun pada hari lahir yang ke 22 bagi kumpulan induk dengan dos 30 mg/kg. Dos 30 mg/kg memberikan kesan buruk pada kedua-dua puberti dan peringkat dewasa tikus. Didapati apabila dibandingkan dengan kumpulan kawalan, dos diberikan sebanyak 30 mg/kg memberikan kesan negatif yang nyata kepada kedua-dua kumpulan tikus jantan dan betina pada peringkat dewasa. Dalam progeni tikus pubert, berat testis, jumlah sperma dan motiliti, manakala peratus sperma abnormal dan penukaran atropik telah meningkat, disamping penurunan paras hormon pituitari-gonad, 3 beta HSD dan jumlah paras protein. Peningkatan dalam aktiviti alkali dan asid fosfatase juga diperhatikan, Pada peringkat dewasa, berat testis, bilangan sperma, motiliti didapati meningkat, manakala hormon pituitari, 3 beta HSD dan paras jumlah protein menurun diiringi dengan peningkatan paras enzim penanda testis. Progeni betina pada peringkat pubert dalam kumpulan dos 30 mg/kg menunjukkan penurunan dalam berat badan, berat ovari, paras hormon pituitari-gonadal, 3 beta HSD, jumlah protein dan kepekanan Vitamin C, dengan peningkatan paras enzim penanda ovari. Pada peringkat dewasa progeni tikus betina menunjukkan penurunan dalam berat badan, berat ovari, paras hormone pituitari-gonadal, 3 beta HSD, aktiviti G6PD, jumlah protein dan kepekanan Vitamin C disamping peningkatan aktiviti alkali fosfatase, asid fosfatase dan laktat dehidrogenase. Terdapat bukti menunjukkan kesan buruk pada pembiakan pada dos 15 mg/kg dalam kedua-dua progeni tikus jantan dan betina. Kajian ini juga menunjukkan kesan buruk tidak dapat diterbalikkan pada peringkat dewasa dan pubert dalam kedua-dua progeni tikus jantan dan betina. Walau bagaimanapun beberapa parameter dapat diterbalikkan Darjah ketoksikan diazinon pada progeni jantan dan betina adalah sama pada peringkat pubert dan dewasa. Secara keseluruhan, diazinon adalah toksik pada pembiakan dalam kedua-dua progeni jantan dan betina apabila didedahkan pada peringkat sebelum dan selepas kelahiran.

Perkataan kunci: Ketoksikan reproduktif, Diazinon, Anak tikus
# CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DECLARATION</th>
<th>CERTIFICATION</th>
<th>ACKNOWLEDGEMENTS</th>
<th>ABSTRACT</th>
<th>ABSTRAK</th>
<th>CONTENTS</th>
<th>LIST OF TABLES</th>
<th>LIST OF FIGURES</th>
<th>LIST OF ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

## CHAPTER 1: INTRODUCTION

1.1 Introduction  
1.2 Aims of the Study  
1.3 Objectives of Study  
1.4 Scope of Study

## CHAPTER 2: LITERATURE REVIEW

2.1 Classification of pesticides  
2.2 Effects of pesticides on male reproductive system  
2.2.1 Declining sperm counts  
2.2.2 Causes of decline in sperm counts  
2.2.3 Pesticides linked with male infertility  
2.3 Effects of pesticides on female reproductive system  
2.4 Maternal exposure to pesticides  
2.5 Spermatogenesis and Oogenesis  
2.5.1 Spermatogenesis  
2.5.2 Oogenesis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>ii</td>
</tr>
<tr>
<td>iii</td>
</tr>
<tr>
<td>iv</td>
</tr>
<tr>
<td>v</td>
</tr>
<tr>
<td>vi</td>
</tr>
<tr>
<td>vii</td>
</tr>
<tr>
<td>xi</td>
</tr>
<tr>
<td>xix</td>
</tr>
<tr>
<td>xx</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>vii</td>
</tr>
</tbody>
</table>
CHAPTER 3: MATERIALS AND METHODS

3.1 Diazinon

3.2 Experimental animals
   - 3.2.1 Grouping of animals
   - 3.2.2 Male offspring at puberty and adulthood
   - 3.2.3 Female rat offspring at puberty and adulthood

3.3 Epididymal Sperm Count, Motility and Morphology
   - 3.3.1 Sperm morphology
   - 3.3.2 Epididymal sperm count and motility

3.4 Assay for Testicular and Ovarian Enzymes Activities
   - 3.4.1 Acid phosphatase
   - 3.4.2 Alkaline phosphatase
   - 3.4.3 Cholinesterase
   - 3.4.4 Lactate dehydrogenase (LDH-L)
   - 3.4.5 Glucose 6 phosphate dehydrogenase:
   - 3.4.6 Determination of ascorbic acid (Vitamin C)
   - 3.4.7 Protein estimation using folin-ciocalteau reagent

3.5 Hormonal Analysis
   - 3.5.1 Enzyme immunoassay for the quantitative determination of testosterone concentration.
   - 3.5.2 Enzyme immunoassay for the quantitative determination of prolactin concentration
3.5.3 Enzyme immunoassay for the quantitative determination of follicle stimulation hormone (FSH) concentration 82
3.5.4 Enzyme immunoassay for the quantitative determination of luteinizing hormone (LH) concentration 83
3.5.5 Enzyme immunoassay for the quantitative determination of progesterone concentration 84
3.5.6 Enzyme immunoassay for the quantitative determination of estradiol concentration 86
3.6 Histological Analysis 87
3.6.1 Tissue sampling 87
3.6.2 Tissue processing and sectioning 87
3.6.3 Hematoxylin and eosin staining (H & E staining) 88
3.6.4 Seminiferous tubular diameter (STD) 90
3.6.5 Seminiferous epithelial height (SEH) 90
3.6.6 Photomicrography 91
3.7 Immunohistochemistry for 3 Beta Hydrosteriod Dehydrogenase 91
3.8 Statistical Analysis 92

CHAPTER 4: RESULTS 93
4.1 Maternal Findings of Dams Exposed to Diazinon 93
4.1.1 Maternal body weight. 93
4.1.2 Pregnancy and its outcome. 93
4.1.3 Post natal growth 94
4.1.4 Reproductive findings of dams. 95
4.1.5 Histopathology evaluation 98
4.2 Male Rat Offspring 101
4.2.1 Male rat offspring at puberty 101
4.2.2 Male rat offspring at adulthood 103
4.2.3 Correlation of various parameters 106
4.2.4 Comparison between puberty and adulthood 112
4.2.5 Histopathological findings of testis and epididymis. 128
4.3 Female Rat Offspring 139
4.3.1 Female rat offspring at puberty 139
4.3.2 Female rat offspring at adulthood 141
4.3.3 Correlation of various parameters 143
4.3.4 Comparison between puberty and adulthood
4.3.5 Histopathological evaluation.

4.4 Comparison between Male and Female Rat Offspring
4.4.1 Female puberty versus male puberty
4.4.2 Female adulthood versus male adulthood

CHAPTER 5: DISCUSSION

5.1 Effect of Diazinon on the Mother Rats (Dams)
5.2 Effect of Diazinon on Male Rat offspring
   5.2.1 Male rat offspring at puberty
   5.2.2 Male rat offspring at adulthood
5.3 Effect of Diazinon on Female Rat Offspring
   5.3.1 Female rat offspring at puberty
   5.3.2 Female rat offspring at adulthood
5.4 The Possible Mechanism of Action of Diazinon
   5.4.1 Male offsprings exposed through their mothers
   5.4.2 Dams and their female offsprings exposed through their mothers

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDIX A

APPENDIX B
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of pesticides.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Pesticides with known or suspected endocrine disrupting properties, mechanisms and effects on the female reproductive system in experimental animals.</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of organophosphates.</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Characteristics of Diazinon.</td>
<td>52</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of reproductive toxicity of Diazinon.</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of diazinon on maternal body weight (mean ± SD) in rats.</td>
<td>114</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of diazinon on pregnancy and its outcome</td>
<td>115</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of diazinon on postnatal pups growth.</td>
<td>115</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of different groups with respect to body weight, ovary weight and uterus weight in treated and control rats.</td>
<td>117</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of different groups with respect to various parameter in treated and control dams.</td>
<td>117</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of different groups with respect to various parameters in male rat offspring at puberty</td>
<td>123</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of different groups with respect to various parameters in male rat offspring at puberty</td>
<td>124</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison of different groups with respect to various parameters in male rat offspring at adulthood</td>
<td>127</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of different groups with respect to various parameters in male rat offspring at adulthood</td>
<td>128</td>
</tr>
<tr>
<td>4.10</td>
<td>Male puberty versus Male adulthood (P value distributions).</td>
<td>146</td>
</tr>
<tr>
<td>4.11</td>
<td>Male puberty versus Male adulthood (P value distributions).</td>
<td>147</td>
</tr>
<tr>
<td>4.12</td>
<td>Male puberty versus Male adulthood (P value distributions).</td>
<td>148</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Significant increase/decrease of changes in values of various parameters from male puberty to adulthood</td>
<td></td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Comparison of different groups with respect to various parameters in female rat offspring at puberty.</td>
<td></td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Comparison of different groups with respect to various parameters in female rat offspring at adulthood.</td>
<td></td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Comparison of different groups with respect to various parameters in female rat offspring at adulthood.</td>
<td></td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Female puberty versus Female adulthood (P value distributions)</td>
<td></td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Female puberty versus Female adulthood (P value distributions)</td>
<td></td>
</tr>
<tr>
<td>Table 4.19</td>
<td>Significant increase/decrease of changes in values of various parameters from female puberty to adulthood</td>
<td></td>
</tr>
<tr>
<td>Table 4.20</td>
<td>Female puberty versus Male puberty (P value distributions)</td>
<td></td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Significant increase/decrease of changes in values of various parameters in male pubertal rats compared to female pubertal rats.</td>
<td></td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Significant increase/decrease in male adulthood rats compared to female adulthood rats.</td>
<td></td>
</tr>
<tr>
<td>Table 4.23</td>
<td>Female adulthood versus male adulthood (P value distributions)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 Linear regression of mean sperm density reported in 61 publications 3

Figure 2.2 Mechanism of action of Pesticides on Female Reproductive System. 21

Figure 2.3 Cell divisions during spermatogenesis. 31

Figure 2.4 Structure of an ovary 36

Figure 2.5 Oogenesis. 38

Figure 2.6 Synthesis of the male sex hormones in Leydig cells of the testis. P450SSC, 3b-DH, and P450c17 are the same enzymes as those needed for adrenal steroid hormone synthesis. 40

Figure 2.7 Synthesis of the major female sex hormones in the ovary. 42

Figure 2.8 Metabolic schemes for diazinon. 58

Figure 3.1 Treatment schedule for F0 rat (mothers) 73

Figure 3.2 Dam and its offsprings. 73

Figure 3.3 Stepwise Methods for F0 rats (mothers). 75

Figure 3.4 Necropsy schedule for F1 males and females. 75

Figure 3.5 Control group and necropsy schedule for F1 male and female rat offspring. 77

Figure 3.6 Treated group (10 mg/kg body weight) and necropsy schedule for F1 male and female offsprings. 78

Figure 3.7 Treated group (15 mg/kg body weight) and necropsy schedule for F1 male and female rat offspring. 79

Figure 3.8 Treated group (30 mg/kg body weight) and necropsy schedule for F1 male and female rat offspring. 80

Figure 3.9 Flow chart for methodology for male rat offspring. 81
Figure 3.10 Flow chart for methodology for female rat offspring.

Figure 3.11 Photomicrographs showing normal and abnormal sperms. A: normal, B: Banana shaped, C: Hookless, D: Coiled shaped, E: Amorphous head. Magnification: 400X

Figure 3.12 Flow chart for dehydration, clearing and paraffin infiltration procedure.

Figure 3.13 Flow chart for paraffin removal process.

Figure 4.1 Photomicrographs of Ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in control dams.

Figure 4.2 Photomicrographs of 15 mg/kg dams for Uterus (a) 100 X (b) 400 X and Ovary (c) 100 X (d) 400 X.

Figure 4.3 Photomicrographs of 30 mg/kg dams for Uterus (a) 100 X (b) 400 X and Ovary (c) 100 X (d) 400 X.

Figure 4.4 Correlation (sperm count versus plasma FSH, plasma LH, plasma testosterone) for control pubertal rats.

Figure 4.5 Correlation (sperm count versus plasma FSH, plasma LH, plasma testosterone) for 10 mg/kg pubertal rats.

Figure 4.6 Correlation (sperm count versus plasma FSH, plasma LH, plasma testosterone) for 15 mg/kg pubertal rats.

Figure 4.7 Correlation (sperm count versus plasma FSH, plasma LH, plasma testosterone) for 30 mg/kg pubertal rats.

Figure 4.8 Correlation (sperm count versus plasma FSH, plasma LH, plasma Testosterone) for control adulthood rats.

Figure 4.9 Correlation (sperm count versus plasma FSH, plasma LH, plasma Testosterone) for 10 mg/kg adulthood rats.

Figure 4.10 Correlation (sperm count versus plasma FSH, plasma LH, plasma testosterone) for 15 mg/kg adulthood rats.

Figure 4.11 Correlation (sperm count versus plasma FSH, plasma LH, plasma testosterone) for 30 mg/kg adulthood rats.

Figure 4.12 Comparison of body weight for male rat offspring at puberty and adulthood

Figure 4.13 Comparison of testis weight (absolute) for male rat offspring at puberty and adulthood
Figure 4.14  Comparison of testis weight (relative) for male rat offspring at puberty and adulthood.

Figure 4.15  Comparison of epididymis weight (absolute) for male rat offspring at puberty and adulthood.

Figure 4.16  Comparison of epididymis weight (relative) for male rat offspring at puberty and adulthood.

Figure 4.17  Comparison of sperm count for male rat offspring at puberty and adulthood.

Figure 4.18  Comparison of motile sperm for male rat offspring at puberty and adulthood.

Figure 4.19  Comparison of nonmotile sperm for male rat offspring at puberty and adulthood.

Figure 4.20  Comparison of normal morphology sperm for male rat offspring at puberty and adulthood.

Figure 4.21  Comparison of hookless sperm for male rat offspring at puberty and adulthood.

Figure 4.22  Comparison of banana shaped sperm for male rat offspring at puberty and adulthood.

Figure 4.23  Comparison of folded sperm for male rat offspring at puberty and adulthood.

Figure 4.24  Comparison of two tailed sperm for male rat offspring at puberty and adulthood.

Figure 4.25  Comparison of amorphous sperm for male rat offspring at puberty and adulthood.

Figure 4.26  Comparison of seminiferous tubular diameter of sperm for male rat offspring at puberty and adulthood.

Figure 4.27  Comparison of seminiferous epithelial height of sperm for male rat offspring at puberty and adulthood.

Figure 4.28  Comparison of 3 Beta HSD for male rat offspring at puberty and adulthood.

Figure 4.29  Comparison of plasma testosterone for male rat offspring at puberty and adulthood.
Figure 4.30 Comparison of intra testicular testosterone for male rat offspring at puberty and adulthood

Figure 4.31 Comparison of plasma prolactin for male rat offspring at puberty and adulthood

Figure 4.32 Comparison of plasma FSH for male rat offspring at puberty and adulthood

Figure 4.33 Comparison of plasma LH for male rat offspring at puberty and adulthood

Figure 4.34 Comparison of LDH for male rat offspring at puberty and adulthood

Figure 4.35 Comparison of Alkaline phosphatase for male rat offspring at puberty and adulthood

Figure 4.36 Comparison of Acid phosphatase for male rat offspring at puberty and adulthood

Figure 4.37 Comparison of G6PD for male rat offspring at puberty and adulthood

Figure 4.38 Comparison of cholinesterase for male rat offspring at puberty and adulthood

Figure 4.39 Comparison of cholinesterase for male rat offspring at puberty and adulthood

Figure 4.40 Comparison of cholinesterase for male rat offspring at puberty and adulthood

Figure 4.41 Photomicrographs of testis (a) 100 X (b) 400 X and Epididymis (c) 100 X (d) 400 X in Control pubertal rats.

Figure 4.42 Photomicrographs of testis (a) 100 X (b) 400 X and Epididymis (c) 100 X (d) 400 X in 15 mg/kg pubertal rats.

Figure 4.43 Photomicrographs of testis (a) 100 X (b) 400 X and Epididymis (c) 100 X (d) 400 X in 30 mg/kg pubertal rats.

Figure 4.44 Immunohistochemistry of 3 Beta HSD in testis (a) Control (b) 10 mg/kg of pubertal rat.

Figure 4.45 Immunohistochemistry of 3 beta HSD for testis (c) 15 mg/kg (d) 30 mg/kg of pubertal rats.

Figure 4.46 Photomicrographs of testis (a) 100 X (b) 400 X and
Epididymis (c) 100 X (d) 400 X in control adulthood rats.

Figure 4.47 Photomicrographs of testis (a) 100 X (b) 400 X and Epididymis (c) 100 X (d) 400 X in 15 mg/kg adulthood rats

Figure 4.48 Photomicrographs of testis (a) 100 X (b) 400 X and Epididymis (c) 100 X (d) 400 X in 30 mg/kg adulthood rats

Figure 4.49 Immunohistochemistry of 3 Beta HSD in testis (a) Control (b) 10 mg/kg of male adulthood rats.

Figure 4.50 Immunohistochemistry of 3 beta HSD in testis (c) 15 mg/kg (d) 30 mg/kg of adulthood rats.

Figure 4.51 Comparison of body weight in female rat offspring at puberty and adulthood.

Figure 4.52 Comparison of ovary weight (absolute) in female rat offspring at puberty and adulthood.

Figure 4.53 Comparison of ovary weight (relative) in female rat offspring at puberty and adulthood.

Figure 4.54 Comparison of uterus weight (absolute) in female rat offspring at puberty and adulthood.

Figure 4.55 Comparison of uterus weight (relative) in female rat offspring at puberty and adulthood.

Figure 4.56 Comparison of plasma progesterone in female rat offspring at puberty and adulthood.

Figure 4.57 Comparison of intraovary progesterone in female rat offspring at puberty and adulthood.

Figure 4.58 Comparison of plasma estradiol in female rat offspring at puberty and adulthood.

Figure 4.59 Comparison of intraovary estradiol in female rat offspring at puberty and adulthood.

Figure 4.60 Comparison of plasma prolactin in female rat offspring at puberty and adulthood.

Figure 4.61 Comparison of plasma FSH in female rat offspring at puberty and adulthood.
Figure 4.62 Comparison of plasma LH in female rat offspring at puberty and adulthood.

Figure 4.63 Comparison of LDH in female rat offspring at puberty and adulthood.

Figure 4.64 Comparison of alkaline phosphatase in female rat offspring at puberty and adulthood.

Figure 4.65 Comparison of acid phosphatase in female rat offspring at puberty and adulthood.

Figure 4.66 Comparison of G6PD in female rat offspring at puberty and adulthood.

Figure 4.67 Comparison of Cholinesterase in female rat offspring at puberty and adulthood.

Figure 4.68 Comparison of Vitamin C concentration in female rat offspring at puberty and adulthood.

Figure 4.69 Comparison of total protein in female rat offspring at puberty and adulthood.

Figure 4.70 Photomicrographs of ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in control pubertal rats.

Figure 4.71 Photomicrographs of ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in 15 mg/kg pubertal rats.

Figure 4.72 Photomicrographs of ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in 30 mg/kg pubertal rats.

Figure 4.73 Photomicrographs of ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in control adulthood rats.

Figure 4.74 Photomicrographs of ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in 15 mg/kg adulthood rats.

Figure 4.75 Photomicrographs of ovary (a) 100 X (b) 400 X and Uterus (c) 100 X (d) 400 X in 30 mg/kg adulthood rats.

Figure 4.76 Immunohistochemistry of 3 Beta HSD in Ovary (a) Control (b) 15 mg/kg of pubertal rat.

Figure 4.77 Immunohistochemistry of 3 Beta HSD in Ovary (c) 30 mg/kg of pubertal rat.

Figure 4.78 Immunohistochemistry of 3 Beta HSD in Ovary (a) Control
(b) 15 mg/kg of adulthood rat.

Figure 4.79 Immunohistochemistry of 3 Beta HSD in Ovary (c) 30 mg/kg of adulthood rat.

Figure 5.1 Possible mechanism of action of diazinon in male rat offspring.

Figure 5.2 Possible mechanism of action of diazinon in dams and their female rat offspring.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 β HSD</td>
<td>3 β-Hydroxysteroid dehydrogenase</td>
</tr>
<tr>
<td>AchE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>DBCP</td>
<td>1,2-Dibromo-3-chloropropane</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenytrichloroethane</td>
</tr>
<tr>
<td>DZN</td>
<td>Diazinon</td>
</tr>
<tr>
<td>ELSIA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle Stimulating Hormone</td>
</tr>
<tr>
<td>G6PD</td>
<td>Glucose-6-Phosphate Dehydrogenase</td>
</tr>
<tr>
<td>GLC</td>
<td>Gas-Liquid Chromatography</td>
</tr>
<tr>
<td>H&amp;E</td>
<td>Haematoxylin and Eosin staining</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IMHP</td>
<td>2-isopropyl-4-methyl-6-hydroxypyrimidine</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing Hormone</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No-observed-adverse-effect-level</td>
</tr>
<tr>
<td>OC</td>
<td>Organochlorine</td>
</tr>
<tr>
<td>OP</td>
<td>Organophosphate</td>
</tr>
<tr>
<td>OPIDN</td>
<td>Organophosphorus ester-induced delayed neuropathy</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated biphenyls</td>
</tr>
</tbody>
</table>
PND Postnatal day
PON-1 Paraoxanase-1
STAR Steroidogenic acute regulatory protein
STD Seminiferous Tubular Diameter
TEPP Tetraethyl pyrophosphate
WHO World Health Organization
CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Pesticides are used in agriculture and public health to control insects, weeds, animals, and vectors of disease. The Food and Agriculture Organization of the United Nations (FAO) defined a pesticide as any substance or mixture of substances intended for preventing, destroying or controlling any pest, including vectors of human or animal disease, unwanted species of plants or animals causing harm or otherwise interfering with the production, processing, storage, transport, or marketing of food, agricultural commodities, wood, wood products or animal feedstuffs, or which may be administered to animals for the control of insects, mites, spider mites or other pests in or on their bodies (Anwar, 1997). Next to these intended effects, pesticides may also have adverse health effects for human beings. The main adverse health effects are difficulty in breathing, headache, neurological or psychological effects, irritation of skin and mucous membranes, skin disorders, effects on the immune system, cancer, and reproductive effects (Vainio, 1995; Al-Saleh, 1994). The manifestation of these effects depends on the type of pesticide and on level and duration of exposure.

Pesticides are also used in livestock production and public health programmes. However, liberal and indiscriminate use of pesticides has immense negative impact on the quality of environment and ultimately on the well being of animal and human population. The translocation of pesticides from soil and water, to plants and aquatic animals results in their entry into food chain and bioaccumulation (Rodrigo et al., 2001). Apart from this, higher living organisms were also directly exposed to the pesticides by way of inhalation and dermal absorption. Chronic exposure of humans and livestock to these xenobiotics resulted in various deleterious health hazards that are manifested over time. The resulting toxic effects on various systems of the body have a bearing on the quality of life in humans and the
Pesticides are occasionally used indiscriminately in large amounts causing environmental pollution, and therefore, are a cause of concern. Residual amounts of organophosphate (OP) and organochlorine (OC) pesticides have been detected in soils, water bodies, vegetables, grains and other foods products (John et al., 2001). OPs are known to cause inhibition of acetylcholinesterase activity in the target tissues (Kappers et al., 2001; Abu-Quare and Abou-Donia, 2001). Toxicities of OP pesticides cause adverse effects on many organs (Sultatos, 1994). Other systems that could be affected by OP intoxication are the immune system (Neishabouri et al., 2004; Masoud et al., 2003; Handy et al., 2002; McCauley et al., 2003), urinary system (Rodrigo et al., 2001), reproductive system (Joshi et al., 2003) and pancreas (Hagar et al., 2002). OPs could also cause haematological and biochemical changes (de Blaquiere et al., 2000).

There have been several studies conducted on organophosphate insecticides relating to the adverse reproductive effects on humans. Proven studies on organophosphate pesticides such as methyl parathion (De Silva et al., 2006; Prashanthi et al., 2006), paraoxon-methyl (Duquesne et al., 2006), dimethoate (Farag et al., 2006), chlorpyrifos (Ricceri et al., 2006; Aldridge et al., 2005a; Tian et al., 2005), malathion (Espinoza-Navarro and Bustos-Obregon, 2005; Eskenazi et al., 2004), diisopropyl methylphosphonate (DIMP) (Bucci et al., 2003) and methamidophos (de Castro et al., 2000a,b) showed adverse effects in male and female reproductive systems, with alterations in sexual behavior, decrease in fertility/sperm count, loss of the fetus during pregnancy, lactation as well as premature menopause being among the potential manifestations. These toxicants also interfered with the sexual functioning or reproductive ability of exposed individuals from puberty throughout adulthood.

Perusal of literature found limited information on the impact of pre and postnatal exposure to diazinon on the offspring's reproductive functions at puberty and adulthood (Cox, 2000). There are no reports on the adverse effects of diazinon on reproductive hormones and testicular/ovarian marker enzymes such as acid
REFERENCES


204


206


209


211


