DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

MURALINDRAN MARIAPPAN

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY
UNIVERSITI MALAYSIA SABAH
2008
JUDUL: DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

IJAZAH: Doktor Falsafah (Robotik)

SESSI PENGAJIAN: 2004 – 2008

Saya MURALINDRAN MARIAPPAN mengaku membenarkan tesis sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
4. TIDAK TERHAD

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

Disahkan oleh

(MURALINDRAN MARIAPPAN) (TANDATANGAN PUSTAKAWAN)

Alamat Tetap:
515, Lorong Pipit Uban,
Taman Happy Garden,
88450 Kota Kinabalu

Tariik: 11 July 2008

CATATAN: ¶ Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja khusus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

This thesis is the result of my own work with the exception of quotations, excerpts, summaries and references, the sources which have been duly acknowledged.

17 July 2008

MURALINDRAN MARIAPPAN
PS04-008-009

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH
CERTIFICATION

TITLE: DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

DEGREE: DOCTOR OF PHILOSOPHY (ROBOTICS)

DATE OF VIVA: 27 JUNE 2008

DECLARED BY

1. SUPERVISOR:
 Assoc. Professor Dr. Ali Chekima

2. EXTERNAL SUPERVISOR:
 Professor Dr. Nagarajan Ramachandran
ACKNOWLEDGMENT

Thank you GOD, the Almighty.

I would like to express my unlimited appreciation to Prof. Dr. R. Nagarajan, Assoc. Prof. Dr. Ali Chekima and Prof. Dr. Sazali Yaacob for their valuable supervision and guidance in the research and preparation of this thesis. They provided me with great opportunity and allowed me to go in depth in the applications of areas of robotics, control, sensors, neural network and fuzzy logic. Their consistent motivation and encouragement allowed me to perform better and to unleash my capabilities in my areas, especially in the field related to this thesis.

I would like to express my gratitude to the 1st Vice Chancellor of University Malaysia Sabah, Tan Sri Prof. Datuk Seri Panglima Dr. Abu Hassan Othman and the 2nd Vice Chancellor, Prof. Datuk Dr. Mohd. Noh Dalimin and the current Vice Chancellor, Lt. Kol. Prof. Datuk Dr. Kamaruzaman Hj. Ampon for their permission to carryout this research.

I would also thank Dr. Goh Kim Huat and his team in Niche Frontiere Sdn. Bhd., Ipoh for their dedication and commitment in assisting me in the development of the PALMBOT single arm prototype.

I would like to express my sincere thanks especially to my co-researcher; Ms. Renee Chin Ka Yin, Dr. Mohd. Yunus Hamid, the lecturers and support staff from the School of Engineering & Information Technology and to all the staff of UMS for their kind cooperation in providing moral support during my research.

I would also like to express my sincere gratitude to my colleagues, Mr. M. Karthigayan, Ms. Bamini KPD Balakrishnan, Mr. U. Thangamani, Ms. Vani Annamala, Mr. Hew Yoon Fah and others whom are not mentioned here for their friendly cooperation.

I am grateful to both of my parents Mdm. R. Kamalam and late Mr. A. Mariappan and also my siblings Vijandran, Ravinthran and Uma Devi for all their love, continuous support, patience and encouragement in completing this research work.
ABSTRACT

DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

The dawn of medical robots for hospital applications has enormously enhanced the services rendered to the patients. The medical robots, spanning from surgical to rehabilitation, provide their support not only to the doctors but to the patients as well. In spite of such advancement, some major health hazards still exist for the hospital nurses. Lifting and moving the patients in hospitals are the usual duties of nurses. Injuries and backache occur while they frequently lift the unconscious, uncooperating or immobile patients. This research highlights on the development of a single prototype arm of a Patient Assistance for Lifting Mobility Robot (PALMBOT) as an effort in order to resolve this problem. Fieldwork conducted in Queen Elizabeth Hospital and Nursing Training College, Kota Kinabalu reveals that 83.9% of nurses have backache and back injuries due to patient handling. Observations on lifting techniques and hospital specifications were used to conceive the PALMBOT. The PALMBOT is a semi-automatic robot designed especially to assist nurses to perform lifting and transferring patients to different locations, thereby reducing the chances of nurses getting injured during these tasks. The three arms of the PALMBOT, which perform the automatic patient loading and unloading process, use a set of open end conveyor systems. Since safety is a primary concern of the PALMBOT, Artificial Intelligence (AI) was incorporated in developing various sensing and control modules. Neural network was employed for the detection and execution systems which consist of Patient Position Tracking System (PPTS), Danger Monitoring System (DMS), Automatic Procedure Sequencing System (APSS) and Fail Safe and Automatic Recovery System (FSARS). The intricacy faced in maintaining the tension of the conveyor was resolved by using fuzzy logic in the Conveyor Tension Control System. A prototype single PALMBOT arm was fabricated. All the hardware and software modules are interconnected by using several tools such as MATLAB, EPOS Position Control and MPLAB® IDE PIC C working on the LABVIEW V8.0 as a common platform. The PALMBOT system is tested by a set of experiments and by simulated studies and found to be demonstrating an acceptable performance. It is envisaged that the PALMBOT is a very useful addition to the modern hospital facilities.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 ROBOTS 1
1.2 MEDICAL ROBOTS 2
1.3 REHABILITATION AND SERVICE ROBOTS 4
1.4 PATIENT LIFTING AND TRANSFER ROBOT 9
1.5 ARTIFICIAL INTELLIGENCE IN ROBOTICS 12
1.6 RESEARCH MOTIVATION 15
 1.6.1 Nursing Problems and Back Injuries
 a. Body Mechanics 15
 b. Lifting Techniques 16
1.7 RESEARCH OBJECTIVES 18
1.8 THESIS ORGANIZATION 18

CHAPTER 2: FIELD WORK AND STATISTICAL FINDINGS

2.1 INTRODUCTION 22
2.2 FIELD WORK 23
2.3 OBSERVED PROBLEMS IN PATIENT HANDLING 24
2.4 INTERVIEWS AND INFORMAL FINDINGS 25
 2.4.1 Manpower Shortage 25
 2.4.2 Overcrowded Wards 26
 2.4.3 Utilizing PALMBOT in Hospitals 26
2.5 PATIENT LIFTING TECHNIQUES 26
2.6 HOSPITAL BED AND STRETCHER DIMENSIONS 28
2.7 STATISTICAL ANALYSIS 30
 2.7.1 Descriptive Statistics 31
2.7.2 Linear Regressions Analysis
 a. Regression Analysis for Relationship Between Nurse’s Experiencing Back Injury and Interference with Their Ability to Work
 b. Regression Analysis for Relationship Between Nurse’s Experiencing Back Discomfort and Interference with Their Ability to Work

2.8 DESIGN AND DEVELOPMENT TARGET DEFINITION

2.9 CONCLUSION

CHAPTER 3: PALMBOT DESIGN AND ARCHITECTURE

3.1 INTRODUCTION

3.2 CONCEPTUAL DESIGN
 3.2.1 Available Devices
 3.2.2 PALMBOT – Prototype Design and Dimension

3.3 SIGNAL PROCESSING AND SYSTEM INTEGRATION
 3.3.1 Sensor Integration
 3.3.2 Artificial Intelligence System
 3.3.3 Control System

3.4 SOFTWARE REQUIREMENT

3.5 CONCLUSION

CHAPTER 4: PATIENT TRANSFER MECHANISM & SAFETY

4.1 INTRODUCTION

4.2 FUNCTIONS AND OPERATION MECHANISM OF PALMBOT
 4.2.1 Pre-Transfer Motion
 4.2.2 Patient Loading
 4.2.3 Patient Unloading

4.3 MEDICALLY SAFE PALMBOT
 4.3.1 Design Challenges and Strategies
 a. Human Factor
 b. Clinical Constrains
 c. Redundancy
 d. Limited Operation
 4.3.2 Safety Rules

4.4 CONCLUSION

CHAPTER 5: PALMBOT PROTOTYPE ARM DEVELOPMENT

5.1 INTRODUCTION

5.2 PALMBOT PROTOTYPE ARM DESIGN, DIMENSIONS AND CONTROL
 5.2.1 Base Platform
 5.2.2 Telescopic Extension Arm

5.3 SENSOR SYSTEM DESIGN AND INTEGRATION
 5.3.1 Patient Position Tracking System
 5.3.2 Patient Proximity Detection System
 5.3.3 PALMBOT Arm Limit Detection System
CHAPTER 6: ARTIFICIAL INTELLIGENCE & PALMBOT SOFTWARE STRUCTURE

6.1 INTRODUCTION

6.2 ARTIFICIAL INTELLIGENCE COMPONENTS IN PALMBOT

- 6.2.1 Neural Network
- 6.2.2 Fuzzy Logic

6.3 PALMBOT AI ARCHITECTURE AND CONTROL

- 6.3.1 Necessity for AI Detection System
- 6.3.2 Necessity for AI Execution System
- 6.3.3 Necessity for Conveyor Tension Control System

6.4 PALMBOT SOFTWARE AND HUMAN MACHINE INTERFACE (HMI)

- 6.4.1 LABVIEW Programming
- 6.4.2 MPLAB IDE PIC C Programming
- 6.4.3 MATLAB Integration Programming
- 6.4.4 Epos Positioning Controller Programming
- 6.4.5 PALMBOT Guided User Interface (GUI)

6.5 CONCLUSION

CHAPTER 7: PALMBOT DETECTION SYSTEM

7.1 INTRODUCTION

7.2 PATIENT POSITION TRACKING SYSTEM (PPTS)

- 7.2.1 Position Tracking Classification
- 7.2.2 Data Processing and Modeling
- 7.2.3 Application of Neural Network in PPTS
- 7.2.4 Training of PPTS Neural Network
- 7.2.5 Performance of PPTS Neural Network

7.3 DANGER MONITORING SYSTEM (DMS)

- 7.3.1 Data Processing and Modeling
- 7.3.2 Application of Neural Network in DMS
- 7.3.3 Training of DMS Neural Network
- 7.3.4 Performance of DMS Neural Network

7.4 EXPERIMENTAL RESULTS

7.5 CONCLUSION

CHAPTER 8: PALMBOT EXECUTION SYSTEM

8.1 INTRODUCTION

8.2 AUTOMATIC PROCEDURE SEQUENCING SYSTEM (APSS)

- 8.2.1 Automatic Loading and Unloading Sequences
 - a. Loading Sequences
 - b. Unloading Sequences
- 8.2.2 Conveyor Belt Length Management
8.2.3 Data Modeling for APSS
8.2.4 Application of Neural Network in APSS
8.2.5 Training and Performance of APSS Neural Network
8.3 FAIL SAFE AND AUTOMATIC RECOVERY SYSTEM (FSARS)
8.3.1 Unsafe Conditions During Automatic Sequences
8.3.2 Data Modeling for FSARS
8.3.3 Application of Neural Network In FSARS
8.3.4 Training and Performance Of FSARS Neural Network
8.4 CONCLUSION

CHAPTER 9: CONVEYOR TENSION CONTROL SYSTEM
9.1 INTRODUCTION
9.2 CONVEYOR TENSION CONTROL SYSTEM (CTCS)
9.2.1 Conveyor Tension Management
9.2.2 Conveyor Tension Measurement
9.2.3 Conveyor Motion Analysis
9.3 APPLICATION OF FUZZY LOGIC IN CTCS
9.4 PERFORMANCE OF CTCS FUZZY LOGIC
9.5 EXPERIMENTAL RESULTS
9.6 CONCLUSION

CHAPTER 10: CONCLUSION
10.1 RESEARCH SUMMARY
10.2 FUTURE RESEARCH

REFERENCES

APPENDIX A Nursing Questionnaire
APPENDIX B NI USB-6009 Specification
APPENDIX C PPTS Circuit Diagram
APPENDIX D LABVIEW Program Flow Chart and Coding
APPENDIX E MPLAB PIC C Program Flow Chart and Coding
APPENDIX F Guided User Interface
APPENDIX G DMS Full Listing and Generated Data
APPENDIX H Automatic Procedure Sequencing Flow Chart
APPENDIX I FSARS Full Listing and Generated Data
APPENDIX J List of Papers Derived from this Thesis
<p>| Table 2.1 | Type 1, 2 and 3 Stretcher | 29 |
| Table 2.2 | Type 1 and Type 2 Bed | 29 |
| Table 2.3 | Descriptive Statistics (Nurses Background) | 31 |
| Table 2.4 | Injury by Lifting Patients | 32 |
| Table 2.5 | Injury Reported | 32 |
| Table 2.6 | Nurses Experiencing Back Injury | 33 |
| Table 2.7 | Nurses Experiencing Back Discomfort | 34 |
| Table 2.8 | Interference of Back Injury in their Work Ability | 34 |
| Table 2.9 | Regression Analysis of R and R^2 values for Relationship between Nurse’s Experiencing Back Injury and Interference with Their Ability to Work | 35 |
| Table 2.10 | Regression Analysis of Beta Coefficient, t-Value and P-value for Relationship between Nurse’s Experiencing Back Injury and Interference with Their Ability to Work | 36 |
| Table 2.11 | Regression Analysis of R and R^2 values for Relationship between Nurse’s Experiencing Back Discomfort and Interference with Their Ability to Work | 36 |
| Table 2.12 | Regression Analysis of Beta Coefficient, t-value and p-value for Relationship between Nurse’s Experiencing Back Discomfort and Interference with Their Ability to Work | 37 |
| Table 3.1 | Dimensions of PALMBOT and Hospital Bed | 48 |
| Table 5.1 | Sensor Transfer Data Format for the PIC Module | 91 |
| Table 5.2 | Sensor Array Data Format | 92 |
| Table 5.3 | Sample Data Analysis | 93 |
| Table 7.1 | Content of the Simulated Database | 124 |
| Table 7.2 | PPTS Neural Network Configuration | 125 |
| Table 7.3 | Number of Data Used for the Training the Network | 126 |
| Table 7.4 | Convergence Performance with Respect to Various Configuration of NN | 128 |
| Table 7.5 | The Inputs and Outputs for the Danger Monitoring Module due to Software Error | 131 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>The Inputs and Outputs for the Danger Monitoring Module for Hardware Errors</td>
<td>133</td>
</tr>
<tr>
<td>7.7</td>
<td>The Inputs and Outputs for the Danger Monitoring Module for Unlikely Errors</td>
<td>134</td>
</tr>
<tr>
<td>7.8</td>
<td>Network Configuration for the Danger Monitoring Neural Network</td>
<td>135</td>
</tr>
<tr>
<td>7.9</td>
<td>Content of the Simulated Database</td>
<td>136</td>
</tr>
<tr>
<td>8.1</td>
<td>Conveyor Belt Length Usage during Loading Process</td>
<td>151</td>
</tr>
<tr>
<td>8.2</td>
<td>Conveyor Belt Length Usage during Unloading Process</td>
<td>152</td>
</tr>
<tr>
<td>8.3</td>
<td>Inputs and Outputs for the Automatic Loading Procedures System</td>
<td>153</td>
</tr>
<tr>
<td>8.4</td>
<td>Inputs and Outputs for the Automatic Unloading Procedures System</td>
<td>154</td>
</tr>
<tr>
<td>8.5</td>
<td>Network Configuration for the Automatic Loading Procedure Neural Network</td>
<td>155</td>
</tr>
<tr>
<td>8.6</td>
<td>Configuration for the Automatic Unloading Procedure Neural Network</td>
<td>156</td>
</tr>
<tr>
<td>8.7</td>
<td>Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence L1</td>
<td>164</td>
</tr>
<tr>
<td>8.8</td>
<td>Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence L2</td>
<td>164</td>
</tr>
<tr>
<td>8.9</td>
<td>Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence L2</td>
<td>165</td>
</tr>
<tr>
<td>8.10</td>
<td>Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence L3</td>
<td>165</td>
</tr>
<tr>
<td>8.11</td>
<td>Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence L3</td>
<td>165</td>
</tr>
<tr>
<td>8.12</td>
<td>Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence U1</td>
<td>166</td>
</tr>
<tr>
<td>8.13</td>
<td>Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence U1</td>
<td>167</td>
</tr>
<tr>
<td>8.14</td>
<td>Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence U2</td>
<td>167</td>
</tr>
<tr>
<td>8.15</td>
<td>Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence U2</td>
<td>168</td>
</tr>
</tbody>
</table>
Table 8.16 Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence U3 168
Table 8.17 Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence U4 169
Table 8.18 Network Configuration for FSARS Automatic Loading Procedure Neural Network 170
Table 8.19 Network Configuration for FSARS Automatic Unloading Procedure Neural Network 170
Table 9.1 Conveyor Motors and Extension Arm Motions for Each Sequence 177
Table 9.2 Patient Weight & Current Range for the PALMBOT Fuzzy CTCS 187
Table 9.3 Fuzzy Rules for Conveyor Rolling 189
Table 9.4 Fuzzy Rules for Conveyor Releasing 189
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure 1.1</th>
<th>Terrain Exploratory Robot</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.2</td>
<td>ASIMO – Humanoid Robot</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Arm Rehabilitation Robot</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Surgical Robot</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Pyxis HelpMate Service Robot</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Robocart Service Robot</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>HelpMate Robot used in various Applications</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Fujitsu's Service Robot and Robot Pets</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Nursebot</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>The DeVAR Workstation</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Wheelchair developed at CALL Centre</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Intelligent Wheelchair Maid</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Bionic Arm</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.14</td>
<td>Patient Lifting Arm for the Nursing Care Robot</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.15</td>
<td>Patient Care Robot – Trial Version</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.16</td>
<td>Humanoid Patient Lifting Robot</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.17</td>
<td>Lateral Transferring of Patient</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.18</td>
<td>Available Patient Transfer Devices in the Market</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.19</td>
<td>Lateral Transfer Using Available Equipment</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Australian Lift</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Orthodox Lift</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>3-Man Lift Technique</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Type 1 and 2 Stretchers</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Type 3 Stretcher</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Type 1 Bed</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Type 2 Bed</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Manual Transferring of Patients – Proven Hazardous</td>
<td>40</td>
</tr>
</tbody>
</table>
Figure 3.2 Lateral Patient Transfer System
Figure 3.3 Easy Pivot EP-82
Figure 3.4 Patient-Transfer Device
Figure 3.5 "No-Lift" BOOSTER™
Figure 3.6 "No-Lift" TURNER
Figure 3.7 TOTALIFT-II – Flexibility of TOTALIFT-II and a Patient is transferred from bed to the device
Figure 3.8 Three-dimensional View of PALMBOT
Figure 3.9 The Front View and the Side View of PALMBOT
Figure 3.10 PALMBOT Deployed into Wheelchair Position
Figure 3.11 PALMBOT Arm Functioning
Figure 3.12 Top View of the PALMBOT with Dimensions
Figure 3.13 Patients Body Positions on the PALMBOT
Figure 3.14 PALMBOT Front View Dimensions
Figure 3.15 PALMBOT Side View Dimensions
Figure 3.16 Software and Control System Overview
Figure 3.17 PALMBOT Sensor System
Figure 3.18 Sensor Module Locations on the PALMBOT
Figure 3.19 Placements of the Proximity Sensors for Patient Collision Avoidance
Figure 3.20 NI USB data Acquisition Module
Figure 3.21 PALMBOT with AI System Modules
Figure 3.22 AI System Modules Connectivity
Figure 3.23 EPOS Position Controller Circuit Diagram
Figure 3.24 EPOS Position Controller, 24 DC Power Supply and Motors
Figure 4.1 The PALMBOT in HOME Position
Figure 4.2 The PALMBOT with Arm Lifted
Figure 4.3 PALMBOT when Aligned to the Bed
Figure 4.4 PALMBOT with Arm Lowered onto the Bed
Figure 4.5 The PALMBOT Arm Approaching the Patient
Figure 7.6 Patient of the height of 1.80 m on the Arm of PALMBOT 122
Figure 7.7 Data Flow of the Patient Position Tracking System 123
Figure 7.8 The Pre-Processing of the Sensor Data 125
Figure 7.9 Training Performance of the Position Tracking NN 127
Figure 7.10 The Input and Output of the Danger Monitoring System 129
Figure 7.11 Training Graph of the Danger Monitoring Neural Network 136
Figure 7.12 Developed Single PALMBOT Arm Prototype 137
Figure 7.13 Neural Network Model for Single PALMBOT Arm PPTS 138
Figure 7.14 Experimental Object with Prototype PALMBOT Arm 138
Figure 7.15 Mean Square Error Vs. Epoch for Position Tracking Neural Network 140
Figure 7.16 Object in 'Waiting' State 140
Figure 7.17 Object in 'In Progress' State 140
Figure 7.18 Object in 'Home' State 141
Figure 8.1 Data Flow of the Automatic Procedure Sequencing System 143
Figure 8.2 PALMBOT Arm is ready for Automatic Loading 145
Figure 8.3 PALMBOT Arm Approaching Patient for Loading 145
Figure 8.4 PALMBOT Arm Loading Patient 146
Figure 8.5 Positioning Patient in the Middle of PALMBOT Telescopic Arm 146
Figure 8.6 PALMBOT Arm is Fully Retracted 147
Figure 8.7 PALMBOT Arm is ready for Automatic Unloading 148
Figure 8.8 PALMBOT Telescopic Arm Moved to Maximum Length 148
Figure 8.9 Patient Moved to the Edge of the Hospital Bed 149
Figure 8.10 Patient Transferred to the Hospital Bed 149
Figure 8.11 PALMBOT Arm is Fully Retracted 150
Figure 8.12 Training Graph Response of the Automatic Loading Procedure NN 157
Figure 8.13 Training Graph Response of the Automatic Unloading Procedure NN 157
Figure 8.14 Fail Safe & Automatic Recovery Stages for Loading & Unloading Sequences 158
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGV</td>
<td>Automated Guided Vehicles</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>APSS</td>
<td>Automatic Procedure Sequencing System</td>
</tr>
<tr>
<td>CALL</td>
<td>Communication Aid for Language and Learning</td>
</tr>
<tr>
<td>CAN</td>
<td>Control Area Network</td>
</tr>
<tr>
<td>Conv.</td>
<td>Conveyor</td>
</tr>
<tr>
<td>CS</td>
<td>Conveyor Sequence</td>
</tr>
<tr>
<td>CTCS</td>
<td>Conveyor Tension Control System</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advance Research Projects Agency</td>
</tr>
<tr>
<td>DMS</td>
<td>Danger Monitoring System</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>EP</td>
<td>Electronic Personality</td>
</tr>
<tr>
<td>FL</td>
<td>Fuzzy Logic</td>
</tr>
<tr>
<td>FR</td>
<td>Fail Recovery</td>
</tr>
<tr>
<td>FSARS</td>
<td>Fail Safe and Automatic Recovery System</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HEX</td>
<td>Hexadecimal</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>I/O</td>
<td>Input Output</td>
</tr>
<tr>
<td>KS</td>
<td>Korean Industrial Standards</td>
</tr>
<tr>
<td>L</td>
<td>Load / Loading</td>
</tr>
<tr>
<td>LABVIEW</td>
<td>Laboratory Virtual Engineering Workbench</td>
</tr>
<tr>
<td>MAid</td>
<td>Mobility Aid for Elderly and Disabled People</td>
</tr>
<tr>
<td>MEL</td>
<td>Mechanical Engineering Laboratory</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean-Square Error</td>
</tr>
<tr>
<td>NEDO</td>
<td>New Energy & Industrial Technology Development Organization</td>
</tr>
<tr>
<td>NGI</td>
<td>Next Generation Internet</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Networks</td>
</tr>
<tr>
<td>PALMBOT</td>
<td>Patience Assistance for Lifting Mobility Robot</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>PIC</td>
<td>Peripheral Interface Controller</td>
</tr>
<tr>
<td>PPTS</td>
<td>Patient Position Tracking System</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution Per Minute</td>
</tr>
<tr>
<td>Seq.</td>
<td>Sequence</td>
</tr>
<tr>
<td>SIU</td>
<td>Spinal Injury Unit</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>STRIPS</td>
<td>Stanford Research Institute Problem Solver</td>
</tr>
<tr>
<td>U</td>
<td>Unload / Unloading</td>
</tr>
<tr>
<td>VIs</td>
<td>Virtual Instruments</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Kgf</td>
<td>Kilogram Force</td>
</tr>
<tr>
<td>N</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>u(.)</td>
<td>Net value</td>
</tr>
<tr>
<td>f(.)</td>
<td>Activation function / Threshold function</td>
</tr>
</tbody>
</table>
1.1 ROBOTS
The first robot, Ternstedt Unimate used by General Motors is a programmable machine that operated totally independent of human presence appeared in 1961 four decades after Karl Cepek coined the word 'robot' (Steven, 2002). Since then, these robots were effectively seen as a potential solution in any work settings of “3D”: Dirty, Dangerous and Dull. This definition changed along time as the application flourished due to the technological advancement. From its industrial origin, robots have now spanned into many areas from sea to space. Figure 1.1 and Figure 1.2 show a planet terrain exploratory robot and humanoid robot respectively. A significant contributing factor to this increased use is the robot’s ability to dynamically interact with its environment in a precise manner (Preising et al., 1991).

Although Capek introduced the term 'robot', the word ‘robotics’ was pioneered by Isaac Asimov in 1942 (James, 1999). He underlined three fundamental laws of robotics to ensure that robots are built with safety measures in mind to assist human beings. These laws have been further added and made clear that in any basic engineering design, the robot should obey the laws in order to preserve mankind and
REFERENCES

PEBBLES. 2007. (Providing Education by Bringing Learning Environment to Student), a project providing hospitalized children with a virtual presence in their regular classroom, is described at (Online) <http://www.ryerson.ca/pebbles>

Steven, W. Holland. 2002. Robotics History & GM. Historical Documents Related to the PUMA Robot Development Compiled for the General Motors Corporation
Donation of the Original PUMA Prototype Robot “Alice” to the Smithsonian Institution. April 19.

