PREVALENCE OF REPORTED LACTOSE INTOLERANCE AND CALCIUM INTAKE AMONG YOUNG ADULTS (UNIVERSITY MALAYSIA SABAH, AGED 19-29)

KONG YEE TENG

THIS DISSERTATION IS SUBMITTED TO THE SCHOOL OF FOOD SCIENCE AND NUTRITION IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF FOOD SCIENCE WITH HONORS (FOOD SCIENCE AND NUTRITION)

SCHOOL OF FOOD SCIENCE AND NUTRITION
UNIVERSITI MALAYSIA SABAH

MAY 2006
BORANG PENGESAHAN STATUS TESIS

UDUL: Presence of reported lactose intolerance and calcium intake among young adults (University Malaysia Sabah, students aged 19-20)

JAZAH: Sarjana Muda, Sains Maklumat (Makram dan Kemakram)

SESRI PENGAJIAN: 2002/2003

Saya [Nama Penyelidik] (HURUF BESAR)

mengaku membenarkan tesis (LPS/ Sarjana/ Doktor Falsafah) ini di simpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (✓)**
 - SULIT
 - TERHAD
 - TIDAK TERHAD

(Mengandungi maklumat yang berdaar j keselamatan atau kepentingan Malaysia seperti yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh

(TANDATANGAN PENULIS)

Alamat Tetap: 12, Jalan 7,
Taman Putra, 62000, Ampang,
Selangor

Tarikh: 19/5/06

(TANDATANGAN PUSTAKAWAN)

Nama Penyelia

Tarikh: 19/5/06

CATATAN:

* Potong yang tidak berkenaan.
* Jika tesis ini SULIT atau TERHAD, sila lampiran surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM)
DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

13 April 2006

KONG YEE TENG
(HN 2003-2453)
VERIFICATION

CERTIFIED BY

1. SUPERVISOR
 (PUAN RAMLAH GEORGE MOHD. ROSLI)

2. EXAMINER - 1
 (DATIN RUGAYAH ISSA)

3. EXAMINER - 2
 (DR. MUHAMMAD IQBAL HASHIMI)

4. DEAN
 (PROF. MADYA DR. MOHD. ISMAIL ABDULLAH)
ACKNOWLEDGEMENT

First of all, I want to thanks my sincere thanks to my supervisor, Madam Ramlah George @ Mohd. Rosli for her tireless support and guidance throughout the whole research. The advice and knowledge help me a lot in making this research a success. Not only had that she graciously supplied some research materials and kind enough to comment helpfully on my research.

To all the respondents who committed themselves to fill in the survey form. Without them, surely the research will not be done on time.

I would like to express my gratitude to my parents in terms of financial support and moral support. Not to forget to all my beloved friends who had help me in this entire research. Their countless support and help will be much appreciated.

Last but not least, to many individuals who have in their own special ways contributed to this research.

Thank you.

KONG YEE TENG
ABSTRACT

PREVALENCE OF REPORTED LACTOSE INTOLERANCE AND CALCIUM INTAKE AMONG YOUNG ADULTS (UNIVERSITY MALAYSIA SABAH STUDENTS, AGED 19-29).

This research is on prevalence of reported lactose intolerance and calcium intake among young adults in University Malaysia Sabah students, aged 19-29. A total of 529 of respondents were involved in this research. The objective of this research is to find out the prevalence of self-reported and diagnosed lactose intolerance among University Malaysia Sabah students. It also aims to determine the frequency and types of foods and drinks that are sources of calcium in the diet of self-reported lactose and diagnosed intolerance as compared to those who are lactose tolerant and to estimate the level of calcium intake in the diet of respondents using 3 days food diary in order to determine its adequacy as compared to the Recommended Nutrient Intakes (RNI) for Malaysia 2005 for calcium. This research employed a questionnaire, Food Frequency Questionnaire (FFQ) and 3-days food diary. To analyze the calcium intake of the respondents and the relationship of two variables, program SPSS software version 12.0 was used. Results showed that 33 (6.27%) of respondents reported themselves as being lactose intolerant. The FFQ showed a difference in intake of milk and milk product intake lactose intolerant and lactose tolerant respondents. Moreover, ice-cream was the highest consumption that is sources of calcium in the diet of self-reported lactose and diagnoses intolerance. The Mann-Whitney U test showed a significant difference in average daily calcium intake between lactose tolerant (555.44±61.52mg/day) and lactose intolerant (510.94±81.40mg/day) male respondents. Results also showed significant difference in average daily calcium intake among lactose tolerant female respondents (536.04±62.19 mg/day) and lactose intolerant female respondents (474.52±81.40 mg/day) (Z=0.00). However, no relationship was found between lactose intolerance/ lactose tolerance and achieving the RNI for calcium (X²=0.148, p=0.701). As a conclusion, there is minority of students in University Malaysia Sabah reported themselves as being lactose intolerant.
ABSTRAK

KEWUJUDAN KETIDAK-TOLERANSI LAKTOSA YANG DILAPORKAN DAN PENGAMBILAN KALSIUM DI KALANGAN DEWASA MUDA (UNIVERSITI MALAYSIA SABAH, BERUMUR 19-29).

CONTENTS

<table>
<thead>
<tr>
<th>Title in first page</th>
<th>Declaration</th>
<th>Examiner declaration</th>
<th>Acknowledgement</th>
<th>Abstract</th>
<th>Abstrak</th>
<th>Contents</th>
<th>List of Tables</th>
<th>List of Figures</th>
<th>List of Short Form</th>
<th>List of Symbols</th>
<th>List of Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td>iv</td>
<td>v</td>
<td>vi</td>
<td>vii</td>
<td>x</td>
<td>x</td>
<td>xi</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

CHAPTER 2 LITERATURE REVIEW

2.1. Lactose and lactase

2.2. Definition

2.2.1. Lactose intolerance (LI)

2.2.2. Lactose madiestion (LM)

2.2.3. Lactose malabsorption

2.2.4. Milk intolerance

2.2.5. Hypolactasia

2.2.6 Irritable bowel syndrome (IBS)

2.3. Prevalence of lactose intolerance

2.4. Symptoms of lactose Intolerance

2.5. Types of lactose Intolerance

2.5.1. Primary lactase deficiency

2.5.2. Secondary lactase deficiency

2.5.3. Congenital lactase deficiency

2.6. Diagnosis of lactose intolerance

2.7. Prevalence of lactose intolerance

2.8. Symptoms of lactose Intolerance

2.9. Types of lactose Intolerance

2.9.1. Primary lactase deficiency

2.9.2. Secondary lactase deficiency

2.9.3. Congenital lactase deficiency

2.10. Diagnosis of lactose intolerance

2.11. Prevalence of lactose intolerance

2.12. Symptoms of lactose Intolerance

2.13. Types of lactose Intolerance

2.13.1. Primary lactase deficiency

2.13.2. Secondary lactase deficiency

2.13.3. Congenital lactase deficiency

2.14. Diagnosis of lactose intolerance

2.15. Prevalence of lactose intolerance

2.16. Symptoms of lactose Intolerance

2.17. Types of lactose Intolerance

2.17.1. Primary lactase deficiency

2.17.2. Secondary lactase deficiency

2.17.3. Congenital lactase deficiency

2.18. Diagnosis of lactose intolerance
4.2. Prevalence of self-reported and diagnosis lactose intolerance in University Malaysia Sabah

4.2.1. Symptoms that make respondents feel that they are lactose intolerant

4.2.2. Inquiring & Diagnosis of self-reported lactose intolerance

4.2.3 Respondents who suffer from diarrhea after consumption of dairy products

4.2.4 Duration of avoiding dairy product and action taken to ease or prevent discomfort

4.2.5. Lactose and milk ingestion

4.2.6. Symptoms listed by self-reported lactose intolerance

4.2.7. Special diet

4.2.8. Dairy product substitute

4.2.9. Reading of food label before purchasing a food product

4.2.10. Sources of information of lactose intolerance

4.3. Relationship of body mass index (BMI) and lactose intolerance/lactose tolerance

4.4. Food Frequency Questionnaire

4.5. 3-days Food Diary

CHAPTER 5 CONCLUSION AND SUGGESTION

5.1. Conclusion

5.2. Suggestion

REFERENCE

APPENDIX
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Comparison and contrast of cow's milk allergy and lactose intolerance</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Quantity of lactose in dairy product</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Food with good sources of calcium</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Recommended calcium intake for every life stage group</td>
<td>26</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Subject Characteristics</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Dairy product which cause respondents to suffer from diarrhea after consumption</td>
<td>42</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Action taken to ease or prevent discomfort</td>
<td>43</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Relationship between lactose intolerance/ lactose tolerance and reading the food label</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Sources of information of lactose intolerance</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Relationship between lactose intolerance/ lactose tolerance and weight status</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Mean score for height, weight and Body Mass Index for the non-lactose intolerant and lactose tolerant respondents</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Dietary intake of calcium in lactose tolerant and lactose intolerant respondents</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Relationship between lactose intolerance/ lactose tolerance and meeting the RNI</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Chemical structure of lactose</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Correlation between lactose intolerance and milk production in various countries.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Prevalence of self-reported lactose intolerance in University Malaysia Sabah</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Number of respondents who visited to the doctor/physician</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Symptoms which makes the respondents feel that they are lactose intolerant</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Number of respondents who suffer from diarrhea after consumption of dairy products</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Duration of time for avoid of dairy products by lactose intolerant respondents</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Quantity of milk which cause discomfort after drinking of milk</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Source of special diet</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Number of respondents who take to dairy product substitutes</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Comparison of milk and milk product intake between lactose intolerant and lactose tolerant respondents</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Significant</td>
</tr>
<tr>
<td>**</td>
<td>Not significant</td>
</tr>
<tr>
<td>></td>
<td>More than</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>kcal</td>
<td>Kilocalorie</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Questionnaire</td>
<td>68</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Food Frequency Questionnaire</td>
<td>74</td>
</tr>
<tr>
<td>Appendix C</td>
<td>3-Day Food Diary</td>
<td>81</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Raw Data of Food Frequency Questionnaire (FFQ) (Lactose Intolerance)</td>
<td>86</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Raw Data of Food Frequency Questionnaire (FFQ) (Lactose tolerance)</td>
<td>90</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Relationship between lactose intolerance/ lactose tolerance and weight status.</td>
<td>94</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Relationship between lactose intolerance/ lactose tolerance and reading the food label</td>
<td>96</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Dietary intake of calcium in lactose tolerance and lactose intolerance</td>
<td>98</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Relationship between lactose intolerance/ lactose tolerance and meeting the RNI</td>
<td>99</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Relationship between weight status and the calcium intake among the respondents</td>
<td>101</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Age categories and reference body weights of the Malaysian population</td>
<td>104</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Lactose intolerance (LI) refers to gastrointestinal symptoms such as abdominal pains and bloating excessive flatus, watery stool (Swagerty, Walling & Klein, 2002) or diarrhea (British Nutrition Foundation, 2000) after ingesting a known quantity of milk or milk containing products, experienced by some individuals who have total lack or low levels of enzyme lactase (β-D galactosidase). This is because only this enzyme is able to split lactose into two components, glucose and galactose which are easily absorbed in the intestinal epithelium (Troelsen, 2005).

Lactose (Saccharum lactis), the primary sugar in milk, linked by a β 1, 4 bond, is a disaccharide that comprises equimolar quantities of monosaccharide, glucose, and galactose. Moreover, dietary lactose can be absorbed and used by the body until it is hydrolyzed into monosaccharide in the small intestine by the enzyme lactase (Tolstoi, 2000). As far as is known, lactose has no special nutritional importance for adults however, it is the most important source of energy of a human’s life during the first year, giving nearly half the total energy requirement of infants (Vesa, Marteau & Korpela, 2002).

Refer to the study by Sahi (1994) in the journal by Tolstoi (2000) found that, due to the enzyme lactase (β-D galactosidase) contains both lactase and phlorizin hydrolase
activities, so that it is more specifically known as lactate-phlorizin-hydrolase (LPH). Dietary lactose is hydrolyzed by lactase into glucose and galactose while phlorizin hydrolase is contained two enzymatic sites, phlorizin hydrolase and glycosylceramidase, which split phlorizin and β-glycosylceramide.

Studied by Boey (2000) showed the prevalence of lactase deficiency among Malaysian children with recurrent abdominal pain was high. On the other hand, prevalence statistics about lactose intolerance according to the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (1994), 90% of Asian American adults have lactose intolerance, 70% of African-American adults have lactose intolerance, 74% of Native American adults have lactose intolerance, 53% of Mexican-American adults have lactose intolerance and 15% Caucasian adults have lactose intolerance (Unknown, 2001). The prevalence of high lactase activity levels in adulthood is most common among people of Northern European countries. This is because the climate is favorable to dairy farming and due to this; milk and dairy products have been part of the adult daily diet for centuries. In the Black and Asiatic communities, lactase deficiency (low levels of the enzyme) can be almost 100% because of milk is not habitually consumed as part of the typical adult diet (British Nutrition Foundation, 2000).

The adult enzyme may be high (lactose-digesters), low (hypolactasia) or insignificant or zero (alactasia) (Shukla, 1997). There are 3 types of lactose intolerance, primary lactase deficiency/non-persistence which is decrease in enzyme activity is permanent and cannot be induced by large quantities of lactose. The others types of lactose intolerance is secondary lactase deficiency which is in transient state of lactase deficiency due to damage to the lining of the intestine where the lactase is produced. For the congenital lactase deficiency is an extremely uncommon condition in which the
lactase enzyme is completely absent at birth. This type of lactose deficiency requires complete avoidance of lactose.

However, there are a lot of misperceptions and confusion surround the name, symptom, causes, prevalence, diagnosis of the lactose intolerance due to this; a lot of people claim themselves as “lactose intolerance”. For example, lactose maldigestion, lactose malabsorption, and milk intolerance. Lactase deficiency leads to lactose maldigestion, where a portion of the disaccharide lactose is can not be hydrolyzed into the monosaccharide glucose and galactose (Pribila et al., 2000) due to a low intestinal lactase activity in the brush border membrane of the mucosa and it passes into large intestine, where it is fermented by the colonic microflora (Pribila et al., 2000). On the other hand, when the undigested lactose cannot be absorbed from the intestine into the bloodstream nor transported to the liver, this situation is called lactose malabsorption (Danone World Newsletter, 1996). Milk intolerance is happened due to lactose is characterized by at least one clinical sign of intolerance experienced a few hours after consumed of a known quantity of milk or milk-containing products.

The changes from lactose tolerance to lactose intolerance starts between 2-15 years depending on the cultural and racial (Shukla, 1997). Several factors need to be considered, such as the amount and form in which lactose is given, either whether it is consumed with a meal, or whether the study is double-blinded, when the prevalence of milk intolerance is being evaluated rather than lactose maldigestion because these factors may influence the results (Miller, Jarvis & McBean, 1999).

Refer to the study by Aurisicchio & Pitchumni (1994), diagnosis of lactose intolerance should be based on the patient’s nutritional history, the relationship between
diet and gastrointestinal symptoms and also diagnostic tests (Tolstoi, 2000). There are 2 types of diagnostic tests to diagnose lactose deficiency, which is direct and indirect method. Direct methods comprise intestinal perfusion and intestinal biopsy (British Nutrition Foundation, 2000). Method of intestinal biopsy is to directly assay the lactase activity in the small bowel by taking an intestinal biopsy and to identify populations with primary lactase deficiency, which has been done by researchers (Miller, Jarvis & McBean, 1999). The indirect method includes the lactose tolerance test, a stool acidity test, and the breath hydrogen (H$_2$) test.

People who believe that they are lactose-intolerant usually lead to self-imposed dietary restriction by the individual of milk and dairy products, which are the major source of dietary calcium (McBean, 1999, Fleming & Heimbach, 1994). Following the clinical symptoms of lactose intolerance, such as abdominal cramps and diarrhea, patients frequently tend to avoid the ingestion of milk and milk products. Therefore, lactose intolerance may lead to a low calcium intake (Kudlacek et al., 2002) and other nutrient supply by milk and milk product such as vitamin D, riboflavin, potassium, phosphorus, and magnesium. An inadequate calcium intake increases the risk of osteoporosis, hypertension, and perhaps colon cancer (Miller, Jarvis & McBean, 1999).

Refer to the Recommended Nutrient Intakes for Malaysia by Ministry of Health Malaysia (2005), the young adult, aged 19-29 years old, both men and women are recommended consumed 800mg calcium per day. However, according to the study by Carroccio et al. (1998), it clarified that the impact of self-reported milk intolerance on dietary habits. These subjects did not consume milk, or consumed very low quantities of milk and their daily calcium intake was significantly lower. It should be highlighted due to the result showed that the daily calcium intake was generally much lower than the
recommended level (500 mg vs. 800–1000 mg/day), which could it turn have implications for calcium intake and bone health (Lovelace & Barr, 2005).

Studies demonstrate that lactose maldigesters can consume the amount of lactose in one or two servings of milk, especially in divided doses with meals, without developing symptoms (Miller, Jarvis & McBean, 2001). Drinking milk and eating other lactose-containing dairy foods may improve a person’s ability to digest lactose and also yogurt and fermented dairy products can generally be well tolerated by lactose-intolerant persons, and they are valuable foods and a good source of calcium supply for this group.

Individuals who claim themselves as lactose intolerance need to consult doctor or dietician to get more information about lactose intolerance and they need to understand that dairy food such as milk, cheese, and yogurt, need not be eliminated from their diet and non-dairy food such as broccoli, sardine, anchovy, shrimp paste need to be increased from their diet. Such individuals are also advised to check the food labels for ingredients and to look for other ingredients that might contain lactose as a component, such as whey powder and dried skimmed milk.

Since the lactose intolerance group have the risk on calcium deficiency, so the study is focus on prevalence of reported lactose intolerance and calcium intake among young adults in University Malaysia Sabah’s students, aged 19-29.
Objective:

1. Prevalence of self-reported and diagnosed lactose intolerance in University Malaysia Sabah.

2. Determine the frequency and types of foods and drinks that are sources of calcium in the diet of self-reported lactose and diagnosed intolerance and compare these to lactose tolerance with using Food Frequency Questionnaire.

3. To estimate the level of calcium intake in the diet of respondents with using 3 days food diary in order to determine its adequacy as compared to the Recommended Nutrient Intakes (RNI) for Malaysia 2005 for calcium.
2.1. Lactose and lactase

Lactose (Saccharum lactis) or milk sugar is a disaccharide, the primary carbohydrate in milk of mammals. It contains two monosaccharide, glucose and galactose linked by a 1, 4 β-glycosidic bond (Tolstoi, 2000). The chemical structure of lactose in shown in Figure 1. After consumption, enzyme lactase (β-D-galactosidase) hydrolyzes dietary lactose into glucose and galactose in the human small intestine and later is absorbed into the bloodstream (Tolstoi, 2000). Lactose is water-soluble and accumulates in the whey portion of dairy product. Therefore, all hard cheese had a lower in lactose (McBean, 1999).

Lactose has no special nutritional importance for adults; however, it is the most main source of energy during the first year of a human’s life, given that it comprises nearly half the total energy requirements of infants (Vesa, Marteau, Korpela, 2000). Moreover, lactose is quite widely used in the food industry for example in sweets, bread, sausages and confectionary. This is because lactose provides good texture and binds water and color. Lactose is less than half as sweet as glucose and about one third as sweet as saccharose (Vesa, Marteau & Korpela, 2000). Lactose is transported to the colon if the hydrolysis of lactose in the small bowel is incomplete. Colonic bacteria
ferment lactose and result in short-chain fatty acids and gas for example hydrogen, carbon dioxide, and methane (Suarez, Savaiano & Levitt, 1995).

![Chemical structure of lactose](image)

Figure 2.1: Chemical structure of lactose
(Source: Miller, Jarvis, McBean, 1999)

The lactase enzyme is situated in the brush border (microvilli) of the small intestine enterocyte (Swargerty, Walling & Klein, 2002). Lactase enzyme is responsible for the hydrolysis of lactose into glucose and galactose which can be absorbed across the intestinal epithelium. Studied by Sahi (1994) in the journal by Tolstoi (2000) said that, due to the enzyme lactase (β-D-galactosidase contains both lactase and phlorizin hydrolase activities, it is more specifically known as lactate-phlorizin-hydrolase (LPH). Dietary lactose in hydrolyzed by lactase into glucose and galactose, on the other hand, phlorizin hydrolase has two enzymatic sites, phlorizin hydrolase and glycosylceramidase, which break into phorizin and β-glycosyceramide. Lactase is one of five disaccharides situated on the brush border of the intestinal epithelium and found a lot in the jejunum, which is at the beginning of the small intestine.
Torun, Solomons & Viteri (1979) in the book by Miller, Jarvis, McBean, (1999) reported that activity of the lactase enzyme is very low in the first part of the duodenum and in the terminal ileum however the highest in the proximal ileum. Normally, lactase activity reduces after weaning in most mammals; however, lactase activity can remain into adult life in some human ethnic groups, enabling total digestion of large quantities of dietary lactose (British Nutrition Foundation, 2000). Usually, the activity of lactase starts to decrease between 3 and 5 years of age in many population groups (Rice & Pollard, 2001).

2.2. Definition

2.2.1. Lactose Intolerance (LI)

Lactose intolerance is commonly a lifelong inherited condition but it can be a short-term result of an infection or other insult to the jejunal mucosa. This is the common, generic, name for the condition, but is gets misused and over confused with this name. Usually, lactose intolerance is induced by maldigestion and following malabsorption of lactose. The meaning of "tolerance" and "intolerance" are not synonymous with "digestion" and "maldigestion" and these two words should be used only when in reference to a defined dose of lactose delivered in a specific vehicle for example the subject was intolerant to 50 g of lactose in aqueous solution (Miller, Jarvis, McBean, 1999).

2.2.2 Lactose Maldigestion (LM)

The term "lactose intolerance" is often used synonymously with lactose maldigestion, but this usage is not really correct (Hertzler & Clancy, 2003). Lactase maldigestion is the not the same as lactose intolerance. Lactose maldigestion simply describes the incomplete digestion of lactose (Rosado, Allen & Solomons, 1987, Hertzler & Clancy, 2003) into the absorbable monosaccharide by the enzyme lactase. A portion of the lactose load is not
hydrolized in the small intestine people with lactose maldigestion and later it passes into the large intestine, where it is fermented by colonic microflora. The most common test for diagnosis of lactose maldigestion is the breath hydrogen test. Most of the people with lactose maldigestion do not experience the gastrointestinal symptoms that those with lactose intolerance do after they consume food contains lactose (Pribila, et al., 2000). Most of the lactose maldigesters are able to tolerate moderate amount of milk without significant symptoms (Johnson et al., 1993).

2.2.3 Lactose Malabsorption

Lactose malabsorption is a normal physiological pattern (Swargerty, Walling & Klein, 2002). It implies a physiological impairment in the hydrolysis of lactose into glucose and galactose (Tolstoi, 2000). Lactose malabsorption happens when the undigested lactose from the intestine cannot be absorbed into the bloodstream nor transported to the liver (Danone World Letter, 1996). Gastrointestinal symptoms such as abdominal pain, bloating, passage of loose, watery stools, and excessive flatus are result from malabsorption of dietary lactose in the small intestine (Swagerty, Walling & Klein, 2002).

2.2.4 Milk Intolerance

Milk intolerance, is the experience of the occurrence of abdominal symptoms following milk intake, may or may not be due to lactose maldigestion (Rosado, Allen & Solomons, 1987). Furthermore, symptoms may be due to other gastrointestinal problems. Moreover, several factors such as the amount and form in which lactose is given, whether it is consumed with a meal, and whether the study is double-blinded are needed to consider when the prevalence of milk intolerance is being evaluated rather than lactose maldigestion. This is because those factors may influence the results (Miller, Jarvis, McBean, 1999).
REFERENCE

Ministry of Health. 2006. Body Mass index Calculator. (online) available

NIDDK. 1998. Lactose Intolerance: NIDDK (on-line) available

NHWIC. 2001. Lactose Intolerance: NWHIC (on-line) available

Pravian, R. 2003. Lactose intolerance. (online) available

