PREPARATION AND CHARACTERIZATION OF MEDICAL GRADE ACTIVATED CARBON FROM BANANA FRUIT (*Musa acuminate*)

DESMOND JOHNNY CHONG

DISSERTATION SUBMITTED AS PARTIAL FULFILLMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOUR

INDUSTRIAL CHEMISTRY PROGRAMME
SCHOOL OF SAINS DAN TEKNOLOGI
UNIVERSITI MALAYSIA SABAH

MARCH 2005
BORANG PENGESAHAN STATUS TESIS

UL: PREPARATION AND CHARACTERIZATION OF MEDICAL GRADE ACTIVATED CARBON FROM BANANA FRUIT (AMUSA ACOUMINATA)

h: BACHELOR OF SCIENCE

SESJI PENGAJIAN: 2002 - 2005

DESMOND JOHNNY CHONG

(HURUF BESAR)

* Kau membenarkan tesis (LPS/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabab dibenarkan membuat salinan untuk tujuan pengajian sabaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian sbb.

Sila tandakan ( / )

[ ] SULIT

[Mengandungi maklumat yang berdaIjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHISIA RASMI 1972]

[ ] TERHAD

[Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan]

[ ] TIDAK TERHAD

Disahkan oleh

[Signature]

(TANDATANGAN PUSTAKAWAN)

Nama Penyelia

[Signature]

(Masa: 28/03/2005)

(TANDATANGAN PENULIS)

(Masa: 28/03/2005)

* Potong yang tidak berkenaan.

** Jika tesis ini SULIT atau TERHAD, sila lamparkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@ Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyejukkan, atau disertasi bagi pengajian secara kerja kursus dan penyejukkan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I declare that this work of project is on my own except adapted and abbreviation that every each of it has been stated the sources it is taken from.

31 March 2005

[Signature]

DESMOND JOHNNY CHONG

HS2002-3710
VERIFICATION BY

Signature

1. SUPERVISOR
   (Mr. Collin Joseph)

2. Examiner 1
   (Mr. Moh Pak Yan)

3. Examiner 2
   (Prof. Madya Dr. Masitah Yusoff)

4. Dean
   (Prof. Madya Dr. Amran Ahmed)
ACKNOWLEDGEMENT

I would like to take this opportunity to appreciate everyone that involved directly as well as indirectly on helping hand on my project paper until I finally finished this thesis writing. A special thanks to my supervisor, Mr Collin Joseph for helping me a lot on giving an advice, guidance and encouragement along I am doing this projects. I also want to thanks to all lecturers, my program coordinator and not forget to Dean’s of Sekolah Sains dan Teknologi(SST) for giving an encouragement and make my experiments and analyzed going smoothly with their support.

Special thanks also to all my friends that helping me a lot during I am doing my experiment and during the writing proses happen. A gratitude to all the lab assistants of SST, SKTM, and IBTP that helping me a lot while I am doing analysis and chemical preparation. I also want to give a special thanks to all my family members, start with my parents on giving me encouragement and advice, and to my siblings that supports me a lot during I am doing my final year project.
ABSTRACT

It is known that the porosity and adsorption capacity in a carbon that depended on the nature of precursors, pyrolysis and activation conditions, and the ash content. Porous carbons have been prepared from banana fruit (Musa Accuminata) in different temperature and time limits. The banana fruit has gone through carbonization before activation process occurs. Yield percentages shows that they were not many differences as moisture and ash gave higher percentages as temperature and time activation increase. Iodine number gives a low adsorption value, which is different in time and temperature in comparison. Methylene blue adsorption value shows the same configuration as iodine number. The SEM micrographs taken, proved the porosity of samples, which shows majority of mesopores and macropores volume. All the analyses have been compared with the Pharmaceutical activated carbon standards for medical grade activated carbon.
ABSTRAK

Diketahui bahawa keliangan dan kapasiti jerapan bagi sesuatu karbon aktif bergantung kepada kandungan bahan semulajadi, proses aktivasi dan kandungan debu karbon tersebut. Karbon aktif ini telah disediakan daripada buah pisang yang dijalankan aktivasi dengan masa dan suhu yang berbeza. Buah pisang telah dijalankan proses karbonisasi sebelum aktivasi dijalankan. Peratusan air hilang tidak menunjukkan banyak perubahan ketara diantara sampel bagi masa dan suhu yang berbeza. Manakala ujian kelembapan dan debu memberikan peratusan yang tinggi apabila suhu dan masa aktivasi meningkat. Nombor iodine memberikan nilai jerapan yang rendah yang mana ia berbeza dari segi masa dan suhu, dan begitu juga bagi proses jerapan metalene biru.

Daripada mikrograf SEM yang diambil, adalah terbukti wujudnya liang-liang pada sampel terbabit yang menunjukkan kebanyakkan liang yang terhasil adalah berbentuk ‘mesopores’ dan ‘macropores’. Semua keputusan analisa yang dijalankan adalah dibandingkan dengan nilai dalam ‘Pharmaceutical Activated Carbon Standards’.
# CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF PHOTO</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF GRAPH</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xv</td>
</tr>
</tbody>
</table>

## CHAPTER 1 INTRODUCTION

1.1 BACKGROUND 1-4

1.2 RESEARCH OBJECTIVE 4

1.3 SCOPE OF STUDY 5

## CHAPTER 2 LITERATURE REVIEW

2.1 ACTIVATED CARBON 6-8

2.2 MEDICAL GRADE ACTIVATED CARBON 9-10

2.3 ADSORPTION 10
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Physical Adsorption</td>
<td>10-11</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Chemical Adsorption</td>
<td>11</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Adsorption Isotherm</td>
<td>12-13</td>
</tr>
<tr>
<td>2.4</td>
<td>PREPARATION OF ACTIVATED CARBON</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Carbonization</td>
<td>13-15</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Activation</td>
<td>15-17</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Preparation of Medical Grade Active Carbon</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>ACTIVATED CARBON MATERIAL</td>
<td>18-20</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Banana Fruit</td>
<td>21-22</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Background of Banana</td>
<td>22-23</td>
</tr>
<tr>
<td>2.6</td>
<td>PRODUCTION OF ACTIVATED CARBON</td>
<td>23-25</td>
</tr>
<tr>
<td>2.7</td>
<td>USES OF ACTIVATED CARBON</td>
<td>25-26</td>
</tr>
<tr>
<td>2.8</td>
<td>RAW MATERIALS</td>
<td>26-27</td>
</tr>
<tr>
<td>2.9</td>
<td>CHARACTERIZATION OF ACTIVATED CARBON</td>
<td>27-28</td>
</tr>
<tr>
<td>2.10</td>
<td>MEDICAL GRADE</td>
<td>28-30</td>
</tr>
<tr>
<td>2.11</td>
<td>MANUFACTURER</td>
<td>30-31</td>
</tr>
<tr>
<td>2.12</td>
<td>SPECIFIC USES</td>
<td>31-32</td>
</tr>
<tr>
<td>2.13</td>
<td>ORGANIC REMOVAL CAPABILITY</td>
<td>32-38</td>
</tr>
<tr>
<td>2.14</td>
<td>INORGANIC (NON-METAL) REMOVAL CAPABILITY</td>
<td>39-40</td>
</tr>
<tr>
<td>2.15</td>
<td>METAL REMOVAL CAPABILITY</td>
<td>40-41</td>
</tr>
<tr>
<td>2.16</td>
<td>MICROORGANISM REMOVAL CAPABILITY</td>
<td>41-42</td>
</tr>
<tr>
<td>2.17</td>
<td>OTHER CARBON-BASED FILTERS</td>
<td>42-43</td>
</tr>
<tr>
<td>2.18</td>
<td>LIMITATIONS OF ACTIVATED CARBON</td>
<td>43</td>
</tr>
</tbody>
</table>
CHAPTER 3 METHODOLOGY

3.1 INSTRUMENTS AND APPARATUS

3.2 SAMPLE PREPARATION

3.2.1 Furnace

3.3 CHARACTERIZATION OF ACTIVATED CARBON SAMPLE

3.3.1 Methylene Blue

3.3.2 Iodine Adsorption

3.3.3 pH Determination

3.3.4 Determination of Moisture Content

3.3.5 Determination of Ash Content

3.3.6 Atomic Adsorption Spectrophotometer

3.3.7 Scanning Electron Microscope

CHAPTER 4 RESULTS AND DISCUSSION

4.1 PHYSICAL CHANGES DURING PYROLYSIS

4.2 pH TEST ON THE SAMPLE

4.3 MOISTURE CONTENT

4.4 ASH CONTENT

4.5 ADSORPTION STUDIES ON HEAT TREATED CHAR

4.5.1 Iodine Adsorption

4.5.2 Methylene Blue Adsorption

4.6 STRUCTURE OF ACTIVATED CARBON USING SEM TEST

4.7 METAL IMPURITIES OF ACTIVATED CARBON (AAS)
CHAPTER 5 CONCLUSION

REFERENCES
# LIST OF TABLE

<table>
<thead>
<tr>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Activated carbon Pharmaceutical Industry Standards</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Reactivations Process Specifics</td>
<td>18</td>
</tr>
<tr>
<td>3.1 The temperature and time in the muffle furnace</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Yield, moisture and ash percentages, and pH of samples</td>
<td>56</td>
</tr>
<tr>
<td>4.2 Comparison of Iodine number and methylene blue adsorption</td>
<td>60</td>
</tr>
<tr>
<td>4.3 AAS results tested into samples</td>
<td>69</td>
</tr>
</tbody>
</table>
## LIST OF FIGURE

1. View of Diamond Lattice and Graphite Lattice  
   - 2
2. Schematic Activated Carbon Model  
   - 7
3. Flow Chart  
   - 47
# LIST OF PHOTO

<table>
<thead>
<tr>
<th>Photo Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Activated Carbon</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Activated Carbon Surface</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Porosity of the Activated Carbon</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Example of Carbonized Coconut</td>
<td>17</td>
</tr>
<tr>
<td>1.5 Example of Coconut Activated Carbon</td>
<td>17</td>
</tr>
<tr>
<td>1.6 Musa Accuminata (Pisang Berangan)</td>
<td>19</td>
</tr>
<tr>
<td>1.7 Grown Wild Banana</td>
<td>20</td>
</tr>
<tr>
<td>3.1 Green Banana with the samples size after being cut</td>
<td>48</td>
</tr>
<tr>
<td>3.2 Cary 50 Bio UV-Visible spectrophotometer</td>
<td>49</td>
</tr>
<tr>
<td>3.3 Orion pH Meter Model 420A</td>
<td>51</td>
</tr>
<tr>
<td>3.4 Perkin Elmer Atomic Adsorption Spectrophotometer</td>
<td>53</td>
</tr>
<tr>
<td>3.5 JEOL JSM-5510 SEM</td>
<td>54</td>
</tr>
<tr>
<td>4.1 Structure of Banana Fruit Used</td>
<td>56</td>
</tr>
<tr>
<td>4.2 SEM micrograph of activated carbon of sample 1 (500°C 45mins)</td>
<td>64</td>
</tr>
<tr>
<td>4.3 SEM micrograph of activated carbon of sample 2 (500°C 1hrs)</td>
<td>65</td>
</tr>
<tr>
<td>4.4 SEM micrograph of activated carbon of sample 3 (600°C 45mins)</td>
<td>66</td>
</tr>
<tr>
<td>4.5 SEM micrograph of activated carbon of sample 4 (600°C 1hr)</td>
<td>67</td>
</tr>
</tbody>
</table>
# LIST OF GRAPH

4.1 Comparison graph among samples analyzed .......................... 59
4.2 Comparison graph among iodine number and methylene blue .......... 61
LIST OF APPENDIX

A. Yield percentage calculation 78
B. Moisture content calculation 79
C. Ash content calculation 80
D. Calculation on iodine adsorption 81
E. UV-VIS calibration graph and methylene blue calculation 82-83
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Carbon is an important chemical element, there is 9.5% of Carbon in the human body and 80-90% of our body is water and other elements. Carbon material use in various fields especially in modern industrial practice and everyday life. Carbon can exist in a number of forms with either crystalline (i.e. diamonds and graphite) (Figure 1.1) or amorphous (without a regular shape) structures (charcoal). One of the carbon formations that is important to our life is activated carbon which has an amorphous structure. The amorphous forms of charcoal are generally obtained by heating or burning under controlled conditions carbonaceous materials such as coal, oil, wood, oil palm shells, nutshells, peat, lignite etc. The amorphous forms of carbon are carbon black, carbon fibers and porous carbons. Charcoal is a porous black amorphous impure form of carbon. It is made by heating organic material in the absence of air.

Activated carbon (Photo 1.1) is a processed carbon material with a highly developed porous structure and a large internal specific surface area. Activated carbon contain carbon compound the most and various other compounds which depends on
the raw material. Activated carbon has the ability to absorb any kind of substances either from the gas or liquid phase. Activated carbon act as an adsorbent to the substances it adsorbed from. The ability for the activated carbon to adsorb depends on the surface structure (Photo 1.2) of the activated carbon itself (Helena et al., 1991).

**Figure 1.1** View of Diamond lattice and Graphite lattice
Activated carbon has been used since ancient time to purify air and water. However, the commercial use of activated carbon began at the end of the 18th century when the Swedish chemist Karl Wilhelm Scheele discovered (1773) the phenomenon of adsorption of gases on charcoal. Then soon after that the activated carbon when immersed in tartaric acid solution, decolorizes it by adsorbing the organic contaminant presents. This lead to the first industrial application of charcoal in the sugar industry in England in 1794 used as a decolorizing agent for sugar syrup. Since then there are many more discoveries made by chemist to use activated carbons (Richard, 1999).
Granular activated carbon was first developed as a consequence of WWII for gas masks and has been used subsequently for water treatment, solvent recovery and air purification. It is being used when the German armies introduce chemical warfare for the first time against the British and French in the West and against Russian soldiers in the East. This kind of mask, which is used to protect the soldiers respiratory tracts throughout the world to the present day. During that time, coconut shell is the famous raw materials for the production of activated carbon. Led from the accident bring researcher which conduct in 1930’s developed new technologies for obtaining granulated active carbons of supersorben and benzosorben type (Helena et al., 1991).

From that time, activated carbon has been an effective substance for any adsorbing material and research for industry has conducted and from time to time found many uses of activated carbon such as water treatment, odor removal, color removal, medical and pharmaceutical grade, solvent recovery, and much more industrial applications uses.

1.2 RESEARCH OBJECTIVES

The objectives of this research are:

i. To prepare the medical grade activated carbon prepared from banana fruit.

ii. To characterize the prepared activated carbons using Iodine Number and Methylene Blue identification.
1.3 SCOPE OF STUDY

These projects focus on the study of banana fruit as a raw material of the activated carbon and go through physical activation process with a different of times and without any chemical activation involved. Prepared activated carbon then characterize using iodine adsorption and methylene blue adsorption for the performance of the activated carbon.
CHAPTER 2

LITERATURE REVIEW

Activated carbon is used extensively in many fields and most carbon materials can be used to make activated carbon. The academic literature contains many references to activated carbon derived from many agricultural and industrial high-carbon waste products. Commercial activated carbon however is manufactured from only a few carbon sources such as wood and sawdust, oil palm shells, peat, coal, coke, and some other material used.

2.1 ACTIVATED CARBON

Activated carbon is an effective absorbent primarily due to its extensive porosity (Photo 1.3) and has a very large surface area. You can imagine activated carbon as a magnet that will attract the metals (adsorbate) around it. The high effectiveness of activated carbon is all depending on the surface structure of the activated carbon that consist of the surface area and porosity of the activated carbon (Figure 1.2).
The surface area of the activated carbon is where the adsorption will occur. Surface area and adsorption properties are related. It is because if the surface area of the activated carbon is large, the adsorption properties will be more effective. The interesting part of activated carbon surface structure is when 1 teaspoon of activated carbon would exhibit a surface area equivalent to a football field. These happen when we realize that the activated carbon looks granular and exist in a small size. But because of the activated carbon itself have many pores inside, the activated carbon
makes it look smaller but if we count the surface area including the porosity it made, it has a very high surface area that can cover a football field. So from here, we know that surface area and porosity are related where if the porosity of the activated carbon is higher, the surface area of the activated carbon will be larger (Helena et al., 1991).

Activated carbon has the ability to adsorb well because of its porosity structure. There are 3 main types of pores that are cover micropores, mesopores and macropores. Every type of this pores play different roles in any of the adsorption process for vapour and gases. The classification of the pores type is usually based on their linear dimensions. According to the IUPAC classification of pores in adsorbents, pores with the radii below 2nm are called as micropores, radii lying between 2-50nm called as mesopores and radii greater than 50nm are called macropores. The total number of pores and their volume distribution depends mainly on the nature of the raw material used and on the physico-chemical parameters of activation processes (Helena et al., 1991).

The important of both porosity and surface area are no doubt for its ability to adsorb and the adsorption properties. So to understand the activated carbon, we firstly need to know how the surface structure of the activated carbon and it is all depending on the raw material used for making the activated carbon. This is because different raw material gives a different surface area and porosity of the activated carbon (eMedicine, 2004).
REFERENCES


