EGG COLLECTION AND BIOTELEMETRY STUDIES OF TIGER GROUPER, *Epinephelus fuscoguttatus* IN BROODSTOCK TANK

HA HOU CHEW

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

BORNEO MARINE RESEARCH INSTITUTE
UNIVERSITI MALAYSIA SABAH
KOTA KINABALU
2007
EGG COLLECTION AND BIOTELEMETRY STUDIES OF TIGER GROUPER, *Epinephelus fuscoguttatus* IN BROODFISH TANK

HA HOU CHEW

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER

BORNEO MARINE RESEARCH INSTITUTE
UNIVERSITI MALAYSIA SABAH
KOTA KINABALU
2007
BORANG PENGESAHAN STATUS TESIS

JUDUL : Egg Collection and Biotelmetry Studies of Tiger Grouper, Epinephelus fuscoguttatus in Broodstock Tank

IJAZAH : Sarjana Sains (Akuakultur)

SESIPENGAJIAN: 2003/2004

Saya, HA HOU CHEW, mengaku membenarkan tesis Sarjana Sains ini disimpan dia Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. TIDAK TERHAD

Disahkan oleh:

(Penulis: HA HOU CHEW) (TANDATANGAN PUSTAKAWAN)

Alamat Tetap:
Lot 2144, Blok 4, MCLD, Jalan Catleya 2,
Piasau Industrial Estate,
P.O.Box 2091,
98000 Miri,
Sarawak.

Email: hahouchew@gmail.com

(Penyelia: Prof. Dr. Senoo Shigeharu)

Tarih: 25 Julai 2007

Tarih: 2007

CATATAN: @ Tesis dimaksudkan sebagai tesis ijazah Sarjana Sains secara penyelidikan, atau disertasi bagi pengajian secara penyelidikan
DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

HA HOU CHEW
PS03-004-002
8 OCTOBER 2006
I would like to express my sincere grateful acknowledgement to my supervisors, Prof. Dr. Shigeharu Senoo and Dr. Yukinori Mukai, Borneo Marine Research Institute, for their invaluable suggestions, guidance and encouragement throughout the study period. A special acknowledgement to Prof. Dr. Ridzwan Abdul Rahman, the Director of Centre for Research Management and Conference (the former Director of Borneo Marine Research Institute) for his support and encouragement to complete this research project successfully.

I thank Universiti Malaysia Sabah for the assistantship. I would like to express my gratitude to Prof. Datuk Dr. Mohd. Noh Dalimin, Vice-chancellor, Universiti Malaysia Sabah and Prof. Dr. Saleem Mustafa, Director of Borneo Marine Research Institute, for their encouragement and assistance.

I wish to heartily express my indebtedness to Dr. Sitti Raehanah Muhd. Shaleh for her meaningful comments and advice on my writing. I extend heartfelt thanks to Mr. Abentin Estim for his advice on the statistical analysis. I also extend my thanks to Mr. Norazmi Osman, Mr. Henry Lipan and all the staff of Fish Hatchery, Borneo Marine Research Institute for their assistance and co-operation. My sincere appreciation is also extended to Ms. Sow Sok Hui, Ms. Nguang Siew Ing, Mr. Zamzairi Mohd Jawi, my friends, colleagues and well-wishers for their valuable input (directly or indirectly) for the successful completion of the thesis.

Last but not least, a special note of thanks to my parents and Ms. Ng Bee Hong for their patience, encouragement, support and understanding in my absence.
ABSTRACT

This study was performed to get basic knowledge of egg collection in tiger grouper, *Epinephelus fuscoguttatus* through natural spawning in a 150-ton broodstock tank. The chosen 18 *E. fuscoguttatus* were transferred from the net cage into the broodstock tank. Water quality (temperature, dissolved oxygen, pH and salinity) was measured twice per day and the *E. fuscoguttatus* were fed with trash fish. An egg net was set up in the broodstock tank to collect the eggs of *E. fuscoguttatus* every month. Biotelemetry experiment on *E. fuscoguttatus* was conducted to measure the depth where the fish stayed in the broodstock tank and the fish body temperature to understand their behaviour during spawning. Data loggers were able to record the water depth and the temperature at 2-minute intervals continuously for 30 days. Data loggers were inserted into the abdomen of a female and a male. Approximately 105 million eggs were collected from July 2004 until October 2004. Spawning occurred in July (46 million eggs), August (24 million eggs) and October (35 million eggs) 2004. The biggest egg diameter (0.880 mm) with the highest fertilization rate (95.2%) was considered the best egg quality among the 3 spawnings. The fertilization rate of this study was considerably higher than other studies, which seemed to be because of the water depth of the broodstock tank. In each spawning period, *E. fuscoguttatus* spawned for 5-6 consecutive nights in the broodstock tank. The spawning occurred at midnight (11pm-1am). On the other hand, from the water parameter results, spawning could occur at 27.4 °C ± 1.1 °C (mean ± SD), dissolved oxygen 6.26 mg/L ± 0.41 mg/L, salinity 31.4 ppt ± 0.9 ppt and pH 7.88 ± pH 0.19. On average, the females swam to the water surface between 1.2 times/night and 3.8 times/night during the spawning periods. However, it was only 0.6 times/night during the non-spawning periods. The results of the data logger show *E. fuscoguttatus* spawned at the water surface with an extreme changes of body temperature. From this study, the 150-ton broodstock tank with 3 m depth is suitable for the egg collection of *E. fuscoguttatus* through natural spawning. This broodstock tank system and management, such as the water temperature 24.4-31.7 °C, the salinity 30-33 ppt, the DO 5.03-6.97 mg/L, the pH 7.32-8.37 and the mean of feeding rate 1.8%, can be recommended as a guideline to other hatcheries for the constant collection of *E. fuscoguttatus* eggs. The data logger is introduced as a new tool to improve the understanding on fish behaviour, in order to develop the aquaculture in Malaysia.
ABSTRAK

PENGUMPULAN TELUR DAN PENGAYAAN BIOTELEMETRI DENGAN DATA LOGGER TERHADAP KERAPU HARIMAU, *Epinephelus fuscoguttatus* DALAM TANGKI INDUK

Kajian ini bertujuan untuk memperoleh pengetahuan asas tentang pengumpulan telur ikan kerapu harimau, *Epinephelus fuscoguttatus* melalui pembiakan semula jadi dalam tangki ikan berkapasiti 150-tan. Sebanyak 18 ekor induk *E. fuscoguttatus* yang terpilih dipindahkan dari sangkar terapung ke dalam tangki induk ikan. Kualiti air (suhu, oksigen terlarut, pH dan saliniti) disukat dua kali sehari pada induk *E. fuscoguttatus*. Kajian biotelemetri ke atas *E. fuscoguttatus* dijalankan untuk mengukur suhu badan dan kedudukan induk ikan semasa berada dalam tangki. Data logger mampu mencatat suhu dan kedalaman air pada selang 2-minit selama 30 hari berterusan. Data logger dimasukkan ke dalam abdomen seekor induk betina dan jantan masing-masing. Sejumlah 105 juta telur telah dikumpul sejak dari Julai 2004 hingga Oktober 2004. *E. fuscoguttatus* mengawan pada bulan Julai (46 juta telur), Ogos (24 juta telur) dan Oktober (35 juta telur) 2004. Diameter telur yang terbesar (0.880 mm) dengan peratusan persenyawaan tertinggi (95.2%) merupakan quality telur yang terbaik antara ketiganya waktu mengawan. Peratusan persenyawaan telur dalam kajian ini lebih tinggi daripada kajian lain, dan ini bermungkinan dipengaruhi oleh faktor kedalaman air dalam tangki induk ikan. *E. fuscoguttatus* bertelur selama 5-6 malam berterusan pada setiap kali mengawan pada waktu tengah malam (11pm-1am). Rekod parameter air menunjukkan bahawa *E. fuscoguttatus* mengawan pada suhu 27.4 °C ± 1.1 °C (min ± sisihan piawai), oksigen terlarut 6.26 mg/L ± 0.41 mg/L, saliniti 31.3 ppt ± 0.9 ppt and pH 7.88 ± pH 0.19. Secara purata, ikan betina berenang sebanyak 1.2 kali/malam dan 3.8 kali/malam ke permukaan air semasa mengawan, dan hanya 0.6 kali/malam semasa tidak mengawan. Data logger menunjukkan bahawa *E. fuscoguttatus* mengawan pada permukaan air dengan perubahan suhu badan yang mendadak. Daripada kajian ini, tangki induk ikan 150-tan dengan kedalaman 3 m adalah sesuai untuk pengumpulan telur *E. fuscoguttatus* secara semula jadi. Sistem tangki induk ikan ini dan pengurusan seperti suhu air 24.4-31.7 °C, saliniti 30-33 ppt, oksigen terlarut 5.03-6.97 mg/L, pH 7.32-8.37 dan purata kadar pemberian makanan 1.8%, boleh diperkenalkan sebagai panduan kepada pusat penetasan ikan lain untuk mendapatkan telur *E. fuscoguttatus* yang berterusan. Data logger diperkenalkan sebagai alat baru dalam kajian perlakuan ikan untuk perkembangan bidang akuakultur di Malaysia.
KEY WORDS

Tiger grouper, *Epinephelus fuscoguttatus*, Egg collection, Biotelemetry study, Data logger, Broodstock tank.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>KEYWORDS</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1. Aquaculture Development in Sabah 1
1.2. Groupers as High Commercial Table Fish 4
1.3. Introduction of Tiger Grouper, *Epinephelus fuscoguttatus* 5
1.4. Limited Seeds of *E. fuscoguttatus* for Aquaculture 7
1.5. Mass Seed Production 8
1.6. Broodstock Tank for Egg Collection 10
1.7. Problems of Egg Collection of *E. fuscoguttatus* 13
1.8. Biotelemetry Study using Data Loggers 13
1.9. Objectives of Study 16

CHAPTER 2: LITERATURE REVIEW

2.1. Egg Collection Techniques of *E. fuscoguttatus* 17
2.2. Egg Collection through Stripping Method 18
 2.2.1. Stripping Method without Hormonal Injection 18
 2.2.2. Stripping Method with Hormonal Injection 19
2.3. Egg Collection through Natural Spawning 22
 2.3.1. Natural Spawning without Hormonal Injection 22
 2.3.2. Natural Spawning with Hormonal Injection 24
2.4. Water Quality in Broodstock Management 25
2.5. Biotelemetry Studies in Fisheries and Other Research 27
 2.5.1. Advantages of using Data Loggers 28
 2.5.2. Utilization of Data Logger in Research 29
CHAPTER 3: MATERIALS AND METHODS ... 31

3.1. Egg Collection through Natural Spawning in the Broodstock Tank ... 31
 3.1.1. Broodstock Selection ... 31
 3.1.2. Fish Measurement and Insertion of Identity Microchips .. 35
 3.1.3. Broodstock Tank Systems ... 35
 3.1.4. Feeding .. 35
 3.1.5. Water Quality .. 40
 3.1.6. Evaluation of Spawned Eggs (Total Eggs, Fertilization Rate, Egg Diameter, Oil Globule Diameter, Weight and Volume per Egg) 40

3.2. Observation of Spawning Behaviour and Fish Body Temperature using Data Loggers 41
 3.2.1. Implantation of Data Loggers ... 41
 3.2.2. Data Analysis ... 45

CHAPTER 4: RESULTS ... 46

4.1. Evaluation of Spawned Eggs ... 46
 4.1.1. Total Eggs .. 46
 4.1.2. Fertilization Rate .. 46
 4.1.3. Egg Diameter and Oil Globule Diameter 49
 4.1.4. Weight and Volume per Egg ... 49

4.2. Feeding Rate and Water Quality 55

4.3. Staying Water Depth and Changes in Body Temperature of *E. fuscoguttatus* in the Broodstock Tank 59

CHAPTER 5: DISCUSSION ... 68

5.1. Egg Quality through Natural Spawning in the Broodstock Tank ... 68
 5.2. Feeding of *E. fuscoguttatus* in the Broodstock Tank 72
 5.3. Water Quality in the Broodstock Tank 75
 5.4. Biotelemetry Study in the Broodstock Tank 81
 5.4.1. The Female with the Data Logger, DSTmilli in the Broodstock Tank ... 81
5.4.2. The Male with the Data Logger, DSTmilli in the Broodstock Tank .. 85

CHAPTER 6: CONCLUSION ... 88
REFERENCES ... 90
APPENDICES

A. Egg Development of E. fuscoguttatus 96
B. Egg Measurements for 1st Spawning (13-18 July 2004) ... 97
C. Egg Measurements for 2nd Spawning (3-7 August 2004) ... 100
D. Egg Measurements for 3rd Spawning (8-13 October 2004) .. 103
LIST OF FIGURES

Figure 1.1 The state of Sabah in Northern Borneo borders the South China Sea on its west coast, the Sulu Sea on its north-east coast and the Sulawesi Sea on its south-east coast. It has approximately 1,600 km coastline and 55,000 km² total territorial waters 2

Figure 1.2 Annual Marine Fish Landings in Sabah from 1996-2000. The total landed marine fish and the wholesale values were increasing from 1996-2000 .. 3

Figure 1.3 A female broodstock of tiger grouper, *Epinephelus fuscoguttatus* with a total body weight of 6.5 kg and a total body length of 65 cm .. 6

Figure 1.4 Diagram of broodstock tank with water circulation and filtering systems. The broodstock tank is a round fibreglass tank with a diameter of 8 m and a depth of 3 m. The tank is completed with a pair of tanks, a filter tank and a brood fish tank. The filter tank has a stone filter of 50-60 cm depth at the bottom. The water is circulated about 20 times a day for filtration and aeration in the tank. The process of water circulation is shown from 1-7 in the diagram ... 11

Figure 1.5 A clear acrylic window in the broodstock tank for easy examination of broodstock condition and behaviour. (A) The 150-ton broodstock tank which was used for this study. (B) The broodstock can be observed through the window in the broodstock tank (red arrow) .. 12

Figure 1.6 Data logger for biotelemetry study. (A) A data logger, DSTmilli is 3.8 cm in length and 1.3 cm in diameter. The data logger can record the depth and body temperature every 2 minutes for 21,738 times. (B) A turn-key software on a personal computer is used to initiate the logger and to view the collected data through a reader (red arrow) .. 15
Figure 3.1 The determination of sexual maturity of *E. fuscoguttatus*. (A) Abdominal massage by gently pressing the abdomen of male *E. fuscoguttatus*. (B) Cannulation checking on female *E. fuscoguttatus*. (C) Body weight measurement. (D) Measurement of total body length .. 34

Figure 3.2 The body measurements of *E. fuscoguttatus*. *TL*, total length; *SL*, standard length; *HL*, head length; *BH*, body height; *BWD*, body width; *BC*, body circumference .. 36

Figure 3.3 Equipment for the identification of each individual broodstock. (A) ID microchip reader. (B) ID microchip (red circle), which was inserted into the body of *E. fuscoguttatus* .. 37

Figure 3.4 The egg collection system in the broodstock tank. (A) The 150-ton broodstock tank with the water circulation and filtering systems in UMS Hatchery. (B) The red arrow shows the net in the filter tank used for collecting eggs. (C) The 1-ton incubation tanks with aeration .. 38

Figure 3.5 The schematic procedure of egg collection in the broodstock tank, UMS Hatchery. (A) The sea water was filtered by the stone filter. The purified sea water was brought up from the bottom of the filter tank into the broodstock tank by aeration through the 'red pipe'. (B) The filtered sea water moved around the tank on the water surface and flowed back to the filter tank through the 'green pipe'. The floating eggs were collected in the net inside the filter tank .. 39

Figure 3.6 Preparations for the fish dissection. (A) A data logger ready to be put into the fish abdomen. (B) The dissection set and equipment, such as scalpel, scissors, stitching needle and clips. (C) The dissection table with anaesthetic in the sea water. (D) The selected fish was anaesthetized before the dissection started .. 43
Figure 3.7 The data logger implantation. (A) A scalpel was used to make an opening in the abdomen. (B) 3-5 cm opening using scissors. (C) A data logger was inserted into the fish abdomen. (D & E) Stitching work using needle and string. (F) Fish was ready to be released back into the broodstock tank .. 44

Figure 4.1 Total number of spawned eggs from 9 July to 14 October 2004. The *E. fuscoguttatus* spawned for 17 days: 6 days in July, 5 days in August and 6 days in October. A total of 105 million eggs was collected with the highest total eggs, 21.6 million, on 10 October and the lowest total eggs, 0.39 million, on 12 October ... 47

Figure 4.2 Egg fertilization rate. The highest fertilization rate, 100% was recorded on 5 August and the lowest fertilization rate, 0% was recorded on 18 July and 3 August ... 48

Figure 4.3 Mean egg diameter for each spawning day. The eggs with highest mean diameter (0.930 mm) were collected on 13 October while the eggs with lowest mean diameter (0.790 mm) were collected on 10 October ... 50

Figure 4.4 Mean oil globule diameter for each spawning day. The eggs with highest mean oil globule diameter (0.225 mm) were collected on 9 October while the eggs with lowest mean oil globule diameter (0.197 mm) were collected on 17 July ... 51

Figure 4.5 Mean egg volume. The eggs with highest mean egg volume (5.5 x 10^-4 ml) were recorded on 4 August while the eggs with lowest mean egg volume (4.0 x 10^-4 ml) were recorded on 10 October ... 53

Figure 4.6 Mean weight per egg. The eggs with highest mean weight per egg (5.8 x 10^-4 g) were recorded on 3 and 5 August while the eggs with lowest mean weight per egg (4.3 x 10^-4 g) were recorded on 15 July ... 54
Figure 4.7 Feeding rate of the *E. fuscoguttatus* from 9 July to 14 October 2004 is shown by blue line. The black line shows the moving average of feeding rate within 7-day periods. Feeding rates ranged 0.4-4.1% and a mean of 1.8% per feeding was recorded.

Figure 4.8 Water temperature from 9 July to 14 October 2004 is shown by blue line. The black line shows the moving average of feeding rate within 7-day periods. The range of water temperature was 24.4-31.7 °C and the mean ± SD was 27.4 °C ± 1.1 °C.

Figure 4.9 Salinity from 9 July to 14 October 2004 is shown by blue line. The moving average of the salinity within 7-day periods is shown by the black line. The salinity ranged 30-33 ppt with mean ± SD, 31.4 ppt ± 0.9 ppt.

Figure 4.10 Dissolved oxygen (DO) from 9 July to 14 October 2004 is shown by blue line. The moving average of the DO within 7-day periods is shown by the black line. The DO ranged 5.03-6.97 mg/L with the mean ± SD, 6.26 mg/L ± 0.41 mg/L.

Figure 4.11a pH from 9 July to 1 September 2004 is shown by blue line. The moving average of the pH within 7-day periods is shown by the black line. The trend showed that the pH increased during 9 July to 7 August. The pH became stable after 8 August.

Figure 4.11b pH from 22 September to 14 October 2004 is shown by blue line. The moving average of the pH within 7-day periods is shown by the black line. The trend showed that the pH was stable but decreasing after 1 October, especially during the 3rd spawning.

Figure 4.12 Female staying water depth (m) in the broodstock tank from 10 July to 8 August. The yellow line shows the moving average within 8 hours. The female was actively swimming up and down (shown by the blue line) in the tank during the 2nd spawning compared to the other days.
Figure 4.13 Male staying water depth (m) in the broodstock tank from 10 July to 8 August. The male mostly stayed at the bottom of the tank, 2.2-3.0 m. No frequent swimming to the water surface was observed during the spawning .. 64

Figure 4.14 Differences between the female body temperature and water temperature. The yellow line shows the moving average within 8-hour periods. Sudden increments in body temperature were observed during the nights of 1st and 2nd spawnings 65

Figure 4.15 Differences between the male body temperature and water temperature. The yellow line shows the moving average within 8-hour periods. No sudden change in body temperature was observed during the nights of 1st and 2nd spawnings 67

Figure 5.1 Swimming of the female to the upper layer of the tank. Data show that the female swam to the upper layer 256 times and 57 times in day and night time respectively. (A) The female swam to the upper layer of the tank only 10 times with sudden change in body temperature during the 1st spawning, showing that the female was not spawning, but was active at the bottom. (B) The female swam to the upper layer of the tank 77 times with sudden change in body temperature during the 2nd spawning, showing that the female was spawning at the water surface. Fewer swims to the upper layer at nights with no sudden change in body temperature were observed during the non-spawning period 84

Figure 5.2 Swimming of the male to the upper layer of the tank. Data show that the male swam to the upper layer only 3 times (1 and 2 times on 27 July day time and 6 August night time respectively). (C & D) No sudden change in body temperature and frequent swimming to the upper layer were observed during the 1st and 2nd spawning. The male probably was not spawning during the 1st and 2nd spawning periods ... 86
LIST OF TABLES

Table 3.1 Measurements of *E. fuscoguttatus* in the broodstock tank of UMS Hatchery. Totally, 18 *E. fuscoguttatus* (6F and 12M) ranged 2.4-13.5 kg. The total and mean ± SD of body weight were 117.6 kg and 6.5 ± 3.0 kg respectively. One female, No.17 and one male, No.3 (in bold) were selected for the data logger implantation ... 32

Table 4.1 Measurements of the fertilized eggs in mean (and ± SD). The mean fertilization rates in the 1st, 2nd and 3rd spawnings are 82.9%, 95.2% and 82.4% respectively. The eggs in the 2nd spawning have the largest egg size and the highest fertilization rate among the 3 spawning ... 52

Table 5.1 Egg diameters of various fish species. Different fish species have different egg sizes. The collected eggs of *E. fuscoguttatus* ranged 0.8-0.9 mm ... 71

Table 5.2 Spawning of several species during different lunar phases in nature. The spawning of *E. fuscoguttatus* in nature and in the tank occurred in different lunar phases ... 73

Table 5.3 Mean and standard deviation of water quality in the broodstock tank during the experiment, from 9 July to 14 October 2004 76

Table 5.4 Water parameters for intensive culture of several fish species. Some freshwater fish are able to live in lower DO. Tropical fish have higher optimum temperature ranges than temperate fish. Marine fish tolerate a narrower pH range than freshwater fish 77

Table 5.5 Effect of various pH ranges on various species of fish. Almost all species of fish cannot survive in extremely low and high pH (which is less than pH 4.0 and more than pH 9.5 respectively) ... 80
Table 5.6 The staying water depth of the female and the male at the upper layer (<1.5 m) of the broodstock tank during day and night time, from 10 July to 8 August 2004. The female swam to the upper layer of the tank 256 and 57 times in day and night time respectively. The male swam to the upper layer of the tank 1 and 2 times in day and night time respectively 82

Table 5.7 Mean of the (female) swimming to the upper layer of the tank per night. On average, it swam 1.2 and 3.8 times to the upper layer on the nights of 10-19 July and 30 July to 8 August respectively, and only 0.6 times on the nights of 20-29 July 82
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>am</td>
<td>ante meridian</td>
</tr>
<tr>
<td>BC</td>
<td>body circumference</td>
</tr>
<tr>
<td>BH</td>
<td>body height</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>BWd</td>
<td>body width</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>cm³</td>
<td>cubic centimetre</td>
</tr>
<tr>
<td>CPS</td>
<td>carp pituitary suspension</td>
</tr>
<tr>
<td>DA</td>
<td>data acquisition</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>eggs/ml</td>
<td>eggs per millilitre</td>
</tr>
<tr>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g/ml</td>
<td>gram per millilitre</td>
</tr>
<tr>
<td>g/L</td>
<td>gram per litre</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotropin-releasing hormone</td>
</tr>
<tr>
<td>GtH</td>
<td>gonadotropin hormone</td>
</tr>
<tr>
<td>HCG</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HL</td>
<td>head length</td>
</tr>
<tr>
<td>HPS</td>
<td>homoplastic pituitary suspension</td>
</tr>
<tr>
<td>ID</td>
<td>identity</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IP</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>IU</td>
<td>international units</td>
</tr>
<tr>
<td>IU/kg</td>
<td>international units per kilogram</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kg/m³</td>
<td>kilogram per cubic metre</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometre</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LHRHa</td>
<td>luteinizing hormone-releasing hormone analogue</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>M</td>
<td>male</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>m³</td>
<td>cubic metre</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram per litre</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>ml/kg</td>
<td>millilitre per kilogram</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>MT</td>
<td>metric tons</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen ion concentration</td>
</tr>
<tr>
<td>pm</td>
<td>post meridian</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SL</td>
<td>standard length</td>
</tr>
<tr>
<td>TL</td>
<td>total length</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
<tr>
<td>UMS</td>
<td>Universiti Malaysia Sabah</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1. Aquaculture Development in Sabah

The Malaysian Government is encouraging fish farming and facilitating more integrated development of aquaculture zones in the country (Karim, 2003). The government has identified several locations as aquaculture zones and provided infrastructure for aquaculture development. Pulau Gaya is one of the aquaculture zones in Sabah (Sadovy, 2000). There is great potential for aquaculture development in Sabah because it has a suitable climate and strategic geographical features. Sabah fisheries are estimated to have a rapid growth in future with the increase in marine aquaculture activities and seafood processing industries (Department of Fisheries Sabah, 2002).

More than three-quarters of Sabah’s boundaries abut the sea, the South China Sea on its west coast, the Sulu Sea on its northeast coast and the Sulawesi Sea on its southeast coast (Figure 1.1). It has a long coastline of approximately 1,600 km, extending along about 73,600 km2 of coastland. The total territorial waters of Sabah cover around 55,000 km2 (Department of Fisheries Sabah, 1997).

Abundant fishery resources can be found in the wide expanse off shore of Sabah. In 2000, Sabah fishery production was 215,187 metric tons (MT) at value RM876 million (Department of Fisheries Sabah, 2002). From 1996 to 2000, the total landed marine fish increased from 180,100 MT to 202,900 MT (Figure 1.2).
Figure 1.1 The state of Sabah in Northern Borneo borders the South China Sea on its west coast, the Sulu Sea on its north-east coast and the Sulawesi Sea on its south-east coast. It has approximately 1,600 km coastline and 55,000 km² total territorial waters.
Figure 1.2 Annual Marine Fish Landings in Sabah from 1996-2000. The total landed marine fish and the wholesale values were increasing from 1996-2000.

(Source: Department of Fisheries Sabah, 2002)
Within these years, the totals of landed marine fish in 1997 and 2000 slightly decreased. However, the wholesale values of landed marine fish were increasing since 1996, because the landed marine fish, particularly the groupers (Family: Serranidae) had higher demand and price.

1.2. Groupers as High Commercial Table Fish

The demand for live fish, particularly the groupers, has grown markedly in the last two decades (Calumpong, 1993; Lee & Sadovy, 1998; Anon, 2001). In 1997, the volume of live fish traded in Southeast Asia was estimated at about 53,000 MT, including approximately 30,000 MT of groupers (Johannes & Riepen, 1995).

In Sabah, the groupers are the most popular fish in the seafood restaurants. In year 2000, the total landing of groupers in Sabah was 6,241 MT (Department of Fisheries Sabah, 2002). Among the grouper family (Serranidae), the genera Epinephelus, Plectropomus, and Cromileptes are identified as the high-value commercial fish and have been cultured all over the world (Ralston & Polovina, 1987). The groupers are commonly cultured in floating net cages or ponds (Chuah & Teng, 1977; Sugama et al., 1999; Chou & Lee, 1997; Yashiro, 1998).

Grouper aquaculture has developed rapidly because of several factors:

a. High demand and relatively high prices for groupers in local and export markets,

b. Environmental impact associated with capture fisheries for groupers and other high-value reef fish species (Johannes & Riepen 1995), and

c. It is widely accepted that increased aquaculture production of high-value reef fish species will reduce the pressure on wild stocks by providing an alternative product source (Phillips et al., 1997).
REFERENCES

