Large estragole fluxes from oil palms in Borneo

Misztal, Pawel K. and Owen, S. M. and Guenther, Alex B. and Rasmussen, R. A. and Geron, Chris D. and Harley, Peter C. and Phillips, G. J. and Ryan, A. and Edwards, David P. and Hewitt, C. Nicholas and Nemitz, Eiko G. and Siong, J. and Heal, Mathew R. and Cape, John Neil (2010) Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 10 (9). pp. 4343-4358. ISSN 1680-7316

[img]
Preview
Text
Large_estragole_fluxes_from_oil_palms_in_Borneo.pdf

Download (944kB) | Preview

Abstract

During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mgm-2 h-1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus), which pollinates oil palms (Elaeis guineensis). There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ∼0.5 Tg y-1. The observed ecosystem mean fluxes (0.44 mgm-2 h-1) and mean ambient volume mixing ratios (3.0 ppbv) of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene), the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation. © 2010 Author(s).

Item Type: Article
Keyword: Alkene, Ambient air, Atmospheric chemistry, Atmospheric modeling, Biogenic emission, Eddy covariance, Forest canopy, Mixing ratio, Dryophthorinae, Elaeidobius kamerunicus, Elaeis, Elaeis guineensis
Subjects: S Agriculture > SB Plant culture > SB1-1110 Plant culture > SB183-317 Field crops Including cereals, forage crops, grasses, legumes, root crops, sugar plants, textile plants, alkaloidal plants, medicinal plants
Department: SCHOOL > School of Science and Technology
Depositing User: ADMIN ADMIN
Date Deposited: 08 Mar 2011 14:46
Last Modified: 13 Oct 2017 09:39
URI: https://eprints.ums.edu.my/id/eprint/2106

Actions (login required)

View Item View Item