Tan, Li Im and Phang, Wai San and Patricia Anthony and Chin, Kim On (2018) Improving Polarity Classification for Financial News Using Semantic Similarity Techniques. International Journal of Intelligent Information Technologies (IJIIT), 14 (4). pp. 1-16. ISSN 1548-3657
|
Text
Improving Polarity Classification for Financial News Using Semantic Similarity Techniques.pdf Download (40kB) | Preview |
Abstract
This article discusses polarity classification for financial news articles. The proposed Semantic Sentiment Analyser makes use of semantic similarity techniques, sentiment composition rules, and the Positivity/Negativity (P/N) ratio in performing polarity classification. An experiment was conducted to compare the performance of three semantic similarity metrics namely HSO, LESK, and LIN to find the semantically similar pair of word as the input word. The best similarity technique (HSO) is incorporated into the sentiment analyser to find the possible polarity carrier from the analysed text before performing polarity classification. The performance of the proposed Semantic Sentiment Analyser was evaluated using a set of manually annotated financial news articles. The results obtained from the experiment showed that the proposed SSA was able to achieve an F-Score of 90.89% for all cases classification.
Item Type: | Article |
---|---|
Keyword: | financial news articles, semantic similarity, technique (HSO) |
Subjects: | ?? QA76 ?? |
Department: | FACULTY > Faculty of Computing and Informatics |
Depositing User: | SITI AZIZAH BINTI IDRIS - |
Date Deposited: | 12 Mar 2020 16:32 |
Last Modified: | 12 Mar 2020 16:32 |
URI: | https://eprints.ums.edu.my/id/eprint/25225 |
Actions (login required)
![]() |
View Item |