Pengubahsuaian matriks hessian famili kaedah newton bagi permasalahan pengoptimuman tak berkekang berskala besar

Khadizah Ghazali (2022) Pengubahsuaian matriks hessian famili kaedah newton bagi permasalahan pengoptimuman tak berkekang berskala besar. Post-Doctoral thesis, Universiti Malaysia Sabah.

[img] Text
24 PAGES.pdf

Download (1MB)
[img] Text
FULLTEXT.pdf
Restricted to Registered users only

Download (40MB)

Abstract

Pengoptimuman tak berkekang adalah asas kepada teori dan amalan bagi pengoptimuman. Oleh itu, pemodelan matematik bagi permasalahan pengotimuman tak berkekangan merupakan salah satu masalah yang mencabar dalam matematik dan fizik gunaan yang digunakan secara meluas dalam bidang sains, kejuruteraan, perubatan, ekonomi, sains sosial mahupun dalam bidang telekomunikasi. Kajian ini mencadangkan algoritma bagi famili kaedah lelaran pengubahsuaian Newton untuk menyelesaikan permasalahan pengoptimuman tak berkekangan berasaskan kepada empat struktur matriks Hessian iaitu matriks Hessian tiga pepenjuru, matriks Hessian anak panah, matrik Hessian blok pepenjuru dan matriks Hessian padat. Menerusi pendekatan matriks Hessian ke atas pendekatan famili lelaran pengubahsuaian Newton (PNewton) ini, penjanaan sistem persamaan linear Hessian berskala-besar dapat dibangunkan dengan matriks pekalinya adalah bersifat jarang dan padat. Untuk mendapatkan penyelesaian hampiran ke atas sistem linear Hessian tersebut, maka perumusan dan pelaksanaan famili kaedah lelaran PNewton "berpemberat" ini adalah kombinasi antara kaedah lelaran Newton terubahsuai dengan kaedah lelaran titik dan blok bagi famili pengenduran berlebihan berpecutan (AOR). Dalam konteks pendekatan lelaran blok "berpemberat", kaedah Kumpulan Tak Tersirat bagi famili pengenduran berlebihan berpecutan (EGAOR) dengan lelaran dua titik- dan empat titik- yang masing-masing disimbolkan sebagai 2 Titik-EG dan 4 Titik-EG telah dipertimbangkan. Selanjutnya perbincangan mengenai pembangunan perumusan dan kekompleksan pengiraan bagi kaedah lelaran titik dan blok bagi famili lelaran PNewton-AOR yang dikaji juga dimuatkan. Bagi menguji pelaksanaan famili lelaran tersebut, 18 ujian permasalahan pengoptimuman tak berkekangan telah dipertimbangkan untuk menilai prestasi keberkesanan pengiraan dari segi bilangan lelaran, masa lelaran dan ralat mutlak. Keputusan berangka untuk permasalahan pengoptimuman tak berkekangan bagi setiap struktur matriks Hessian dianalisis dan dibandingkan dengan kaedah lelaran PNewton yang berasaskan lelaran Gauss-Seidel (PNewton-GS). Keputusan berangka berdasarkan bilangan lelaran dan masa pelaksanaan juga telah dianalisis dengan menggunakan profil prestasi oleh Dolan dan More. Hasil keputusan berangka menunjukkan bahawa kaedah 4 Titik-PNewton­EGAOR atau 4 Titik-PNewton-EG adalah lebih cekap dari segi bilangan lelaran dan masa pelaksanaan untuk kesemua struktur matriks Hessian yang dipertimbangkan. Oleh itu, dapat dirumuskan bahawa kaedah famili blok PNewton-AOR yang dicadangkan di dalam kajian ini merupakan kaedah yang cekap untuk menyelesaikan permasalahan pengoptimuman tak berkekangan dengan matriks Hessian daripada jenis tiga pepenjuru, anak panah, blok pepenjuru dan padat.

Item Type: Thesis (Post-Doctoral)
Keyword: Pengoptimuman tak berkekang , Matematik , Kaedah newton , Matriks Hessian
Subjects: Q Science > QA Mathematics > QA1-939 Mathematics > QA299.6-433 Analysis
Department: FACULTY > Faculty of Science and Natural Resources
Depositing User: DG MASNIAH AHMAD -
Date Deposited: 13 Jun 2023 14:44
Last Modified: 13 Jun 2023 14:44
URI: https://eprints.ums.edu.my/id/eprint/35623

Actions (login required)

View Item View Item