Characterization of bioplastics developed from whole seaweed biomass (Kappaphycus sp.) added with commercial sodium alginate

Eunice Lua Hanry and Noumie Surugau (2023) Characterization of bioplastics developed from whole seaweed biomass (Kappaphycus sp.) added with commercial sodium alginate. Research Square. pp. 1-14. ISSN 2693-5015

[img] Text
ABSTRACT.pdf

Download (42kB)
[img] Text
FULL TEXT.pdf
Restricted to Registered users only

Download (310kB) | Request a copy

Abstract

Plastic pollution has become one of the most concerning problems globally due to excessive use of one-time use plastics. However, bioplastics could be the answer to help combat this problem as they are readily biodegradable. Development of bioplastics was done by mixing seaweed biomass into distilled water at specific ratio, using glycerol as plasticizer. Bioplastics were developed at the ratio of 100:0, 75:25, 50:50, 25:75, and 0:100 K. alvarezii to commercial sodium alginate ratio. Characterization was done based on their appearance, mechanical, thermal and permeability properties, and biodegradability. Resulted data for their appearance showed that when more K. alvarezii was in the mixture there were more colour differences in comparison to white background and the same trend for the opacity due to the natural colour of whole K. alvarezii. As for their mechanical properties, tensile strength of the bioplastics decreased from 100:0 ratio to 0:100 ratio at 7.91 ± 0.45 MPa (100:0), 6.78 ± 0.31 MPa (75:25), 5.20 ± 0.37 MPa (50:50), 4.13 ± 0.17 MPa (25:75) and 3.76 ± 0.14 MPa (0:100), respectively. Same goes for their elastic modulus at 20.93 ± 0.61 MPa (100:0), 16.47 ± 0.99 MPa (75:25), 11.42 ± 0.53 MPa (50:50), 8.78±0.45 MPa (25:75) and 6.65±0.32 MPa (0:100), respectively. This shows that the addition of alginate enhances the elasticity but decreases tensile strength. As a conclusion, developed seaweed-based bioplastics resulted different properties at different mixture ratio show potential to be incorporated into the market as they are a greener option to fight single-use plastic wrappings such as saran wrap, beverages and food additive packets.

Item Type: Article
Keyword: Kappaphycus alvarezii, crosslinked biopolymer, algae, alginate, sustainable bioplastics
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA1-2040 Engineering (General). Civil engineering (General) > TA401-492 Materials of engineering and construction. Mechanics of materials
T Technology > TP Chemical technology > TP1-1185 Chemical technology
Department: FACULTY > Faculty of Science and Natural Resources
Depositing User: ABDULLAH BIN SABUDIN -
Date Deposited: 08 Feb 2024 16:20
Last Modified: 08 Feb 2024 16:20
URI: https://eprints.ums.edu.my/id/eprint/38182

Actions (login required)

View Item View Item